

Projet de Territoire pour la Gestion de l'Eau du bassin de l'Aronde

Phase 1 : état des lieux et diagnostic prospectif

Etape 2: diagnostic et enjeux

Version	Date	Rédigé par	Commentaires
V1	Mai 2023	SEPIA Conseils	
V2	Juin 2023	SEPIA Conseils	
VF	Juillet 2023	SEPIA Conseils	

Table des matières

1	Coi	ntenu et objectifs de l'étape 2	3
	1.1	Diagnostic et calcul des besoins prospectifs	3
	1.2	Modèle Pluie - débit	3
2	Les	besoins prospectifs à 2050	4
	2.1	Pour l'eau potable	4
	2.1	.1 Apports de compléments à l'état des lieux	4
	2.1	.2 Calculs des besoins prospectifs de l'eau potable à 2050	11
	2.2	Pour l'irrigation	12
	2.2	.1 Apports de compléments à l'état des lieux	12
	2.2	.2 Calculs des besoins prospectifs pour l'irrigation en 2050	14
	2.3	Pour les autres activités économiques et l'industrie	15
	2.3	 Calculs des besoins prospectifs des autres activités économiques et de l'industrie 15 	en 2050
3	Bila	an et synthèse des enjeux	17
	3.1	Des besoins qui doubleraient, tous usages confondus, en 2050	17
	3.2	Synthèse des enjeux	17
4	Le	modèle pluie-débit	19
	4.1	Méthodologie	19
	4.1	.1 Données de base exploitées	19
	4.1	.2 Structuration du modèle	19
	4.2	Analyse de l'impact des prélèvements sur le débit de l'Aronde	22
	4.2	.1 Préliminaire - analyse globale de l'ordre de grandeur des prélèvements	22
	4.2	.2 Analyse des résultats du modèle au pas de temps mensuel	23
5	Anı	nexes	26
	5.1	Annexe 1 - estimation de la population à 2050	26
	5.2	Annexe 2 - estimation des volumes prélevés en 2050 par unité de distribution	27
ı i	ste de	es tableaux et figures	28

1 Contenu et objectifs de l'étape 2

1.1 Diagnostic et calcul des besoins prospectifs

L'étape 2 de la présente étude d'état des lieux et de diagnostic du PTGE Aronde doit permettre de proposer une approche prospective du territoire et de révéler les enjeux de la ZRE de l'Aronde. Certains éléments ont déjà été produit lors de l'étape 1 et seront approfondis dans ce document.

Cette approche prospective sera synthétisée sous la forme d'un bilan besoins / ressources actuels et futurs réalisés avec les collectivités et les représentants agricoles.

L'objectif ici est de donner une tendance des besoins par usage, si l'on poursuit la/les tendance(s) actuelle(s), c'est-à-dire si l'on poursuivait les développements actuellement envisagés par les acteurs. C'est le scénario tendanciel. Les éléments ainsi produits alimenteront la réflexion sur les objectifs à fixer pour le territoire puis les actions à réaliser pour atteindre ces objectifs.

1.2 Modèle Pluie - débit

En complément de cette approche prospective, l'étape 2 comprend également la réalisation d'un modèle pluie – débit. Ce modèle permet d'étudier l'impact des prélèvements sur le débit de la rivière Aronde mais ne permet pas d'étudier l'impact du déplacement d'un forage ou l'impact d'un aménagement sur la rivière. En effet, la donnée référence du modèle est le débit du cours d'eau. Or, un effacement de seuil par exemple n'impact pas le débit du cours d'eau.

Afin de caractériser l'ordre de grandeur des impacts des activités humaines sur le débit de l'Aronde en période de basses eaux, une modélisation a été réalisée sur l'ensemble de la ZRE.

Cette modélisation a été menée au pas de temps mensuel sur la période 2005 – 2021, et intègre donc les données hydrologiques afférentes à cette période, ainsi que les données recueillies lors de l'étape 1 concernant les prélèvements de 2005 à 2021 dans la nappe de la Craie pour la production d'eau potable, l'irrigation agricole et les usages industriels.

2 Les besoins prospectifs à 2050

2.1 Pour l'eau potable

2.1.1 Apports de compléments à l'état des lieux

Afin de compléter l'approche prospective pour l'usage eau potable commencée lors de l'étape 1, nous avons compléter les éléments suivants via des échanges complémentaires avec le Conseil départemental de l'Oise, les services de l'ARC ainsi que les délégataires Suez et la Saur :

- Recueil des données manquantes permettant de caractériser les unités de distribution linéaire de réseau, rendement, Indice Linéaire de Perte (ILP), volumes consommés;
- Actualisation des volumes consommés sur les zones d'activités de l'ARC alimentées par Baugy ;
- Apport de compléments sur les facteurs expliquant les hausses et baisses de volumes prélevés par l'usage eau potable sur la période 2007 – 2017;
- Compléments d'information sur les études menées par l'ARC pour chercher de nouvelles ressources sur son territoire.

2.1.1.1 Les unités de distributions et leurs caractéristiques

26 unités de distributions présentes sur la ZRE ou alimentée par un captage de la ZRE ont été identifiées. Parmi ces 26 unités de distribution (Figure 1) :

- 16 unités de distributions sont situées dans la ZRE et sont alimentées par un forage situé dans la ZRE;
- 9 unités de distributions sont situées dans la ZRE et alimentée par un forage situé en dehors de la ZRE ;
- 1 unité de distribution est située en dehors de la ZRE et alimentée par un forage de la ZRE.

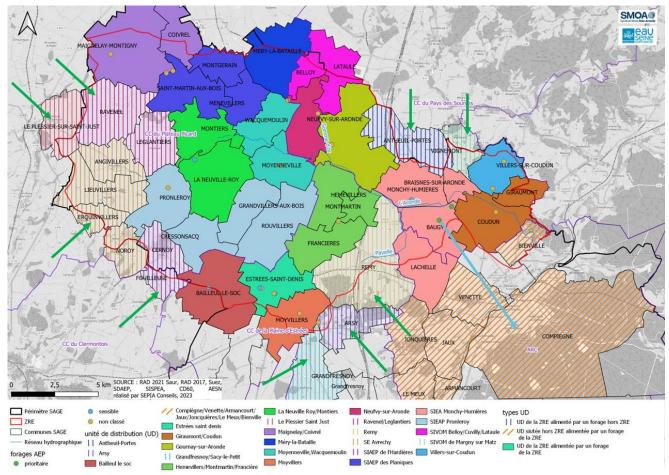


Figure 1 : unités de distribution de la ZRE (source : SEPIA Conseils)

L'ensemble des unités de distribution liées à la ZRE représente un linéaire de réseau de distribution d'eau potable d'environ 537 km. Les unités de distributions présentent des tailles très variées suivant qu'elles concernent une ou plusieurs communes. Ainsi le linéaire de réseau par unité de distribution varie de 3km pour l'unité de distribution de Neufvy-sur-Aronde à 155km pour l'unité de distribution de l'ARC (Figure 2).

Le rendement moyen de ce réseau est de 82,5%. Cela signifie que pour 5 litres mis en distribution, 1 litre d'eau est « perdu » par des fuites mais revient au milieu naturel par infiltration sans pour autant passer par le consommateur. Là encore, on observe une forte variabilité entre les unités de distributions : le rendement le plus faible est de 48,4% pour l'unité de distribution du Plessis-Saint-Just. A noter toutefois que cette unité de distribution est alimentée par un forage situé en dehors de la ZRE. Au contraire le rendement le plus élevé observé est de 96,6% pour l'unité de distribution de Méry-la-Bataille, unité de distribution alimentée par un forage de la ZRE.

Si on ne considère que les unités de distribution alimentées par un forage de la ZRE, c'est l'unité de distribution du SIEA de Monchy-Humières qui présente le rendement le plus faible – 65% (Figure 2).

Enfin l'indice linéaire de perte (ILP) moyen du réseau sur la ZRE est de 2,8. Pour rappel, plus l'ILP est grand, plus les pertes sont importantes. Là encore, on observe une forte variabilité entre les unités de distributions : l'ILP le plus faible est de 0,2 pour l'unité de distribution du SIVOM Belloy/Cuvilly/Lataule

et le plus élevé est de 18,3 pour l'unité de distribution du Plessis-Saint-Just dont le forage est situé hors ZRE.

Si on ne considère que les unités de distribution alimentées par un forage de la ZRE, c'est l'unité de distribution de l'ARC qui présente l'ILP le plus élevé – 5,9 (Figure 2).

Les réseaux présentant les ILP les plus importants (en particulier ceux alimentés par un forage situé dans la ZRE) et /ou les rendements les plus faibles pourraient être ciblés comme prioritaires dans le PTGE afin que des travaux puissent être menés.

unité de distribution			linaire réseau (km)	rendement moyen	ILP moyen	volumes comptabilisés / consommés (m3)
Le Plessier Saint Just	Le Plessier Saint Just	forage hors ZRE	3,1	48,4	18,3	19 278
Antheuil-Portes	neuil-Portes Antheuil-Portes fo		5,5	57,2	4,5	14 238
SIEA Monchy-Humières	Baugy, Monchy-Humières, Braisnes-sur-Aronde, Lachelle	01043X0022	34,0	65,0	4,4	49 695
Gournay-sur-Aronde	Gournay-sur-Aronde	01042X0017	11,4	65,6	2,9	22 746
SIEAP Pronleroy	Cressonsacq, Grandvillers aux Bois, Pronleroy, Rouvillers	01041X0031	22,1	74,2	2,9	71 510
Bailleul le soc	Bailleul le soc	01041X0002	9,2	76,9	2,7	29 555
Giraumont/Coudun	Giraumont, Coudun	01044X0044	11,0	77,9	4,5	64 799
SE Avrechy	Angivillers, Erquinvillers, Noroy	forage hors ZRE	64,8	79,5	3,0	196 169
Moyenneville, Wacquemoulin	Moyenneville, Wacquemoulin	01042X0002	10,7	81,4	2,2	37 223
Maignelay/Coivrel	Maignelay, Coivrel	00815X0064 00808X0010	27,3	81,5	3,6	121 176
Moyvillers	Moyvillers	01042X0066 01046X0122	10,4	82,2	1,8	32 040
Ravenel/Leglantiers	Ravenel, Leglantiers	forage hors ZRE	12,6	83,9	2,1	50 290
SIAEP de l'Hardières	Cernoy, Fouilleuse, Maimbeville, Epineuse	forage hors ZRE	15,3	85,4	1,4	46 231
Compiègne/Venette/Armancourt /Jaux/Joncquières/Le Meux/Bienville	Compiègne, Venette, Armancourt, Jaux, Joncquières, Le Meux, Bienville	01043X0073 01043X0074 01044X0155	154,8	85,7	5,9	1 678 948
Arsy	Arsy	forage hors ZRE	8,9	86,5	1,7	34 854
La Neuville Roy/Montiers	La Neuville Roy, Montiers	01041X0029	12,8	86,9	1,7	52 851
Remy	Remy	forage hors ZRE	16,3	88,5	1,7	78 173
Villers-sur-Coudun	Villers-sur-Coudun	01044X0160 01044X0028	15,3	88,9	1,3	61 392
Estrées saint denis	Estrées saint denis	01042X0055 01042X0094 01042X0096 01042X0148	28,7	90,7	2,5	256 689
Grandfresnoy/Sacy-le-Petit	Grandfresnoy, Sacy-le-Petit	forage hors ZRE	19,1	90,7	1,5	79 720
Neufvy-sur-Aronde	Neufvy-sur-Aronde	00816X0062	3,0	93,2	0,6	9 147
SIVOM de Margny sur Matz	Vignemont	forage hors ZRE		94,0	0,5	
Hemevillers/Montmartin/Francière	Hemevillers, Montmartin, Francière	01042X0090	12,4	94,3	0,7	52 828
SIAEP des Planiques	Saint-Martin-aux-Bois, Montgerain, Menevillers	00815X0073 00815X0071	11,0	94,5	0,3	22 243
SIVOM Belloy/Cuvilly/Lataule	Belloy, Cuvilly, Lataule	00816X0062	9,2	95,1	0,2	12 160
Méry-la-Bataille	Méry-la-Bataille	00816X0044	8,7	96,6	0,3	29 020
Total général			537	82,5	2,8	3 122 975

Figure 2 : linéaire de réseau, rendement, indice linéaire de perte et volumes consommés des unités de distribution de la ZRE (source : RAD 2021, SISPEA)

2.1.1.2 Volumes prélevés et consommés sur la ZRE et évolution depuis les années 2000

Sur l'année 2021, les volumes prélevés par les forages de la ZRE sont de 3,2Mm³. Parmi ces 3,2Mm³, 1,9Mm³ (61%) sont exportés en dehors de la ZRE et consommés sur l'unité de distribution de Compiègne.

Sur l'année 2021, les unités de distribution liées à la ZRE ont consommés environ 3,1Mm³ (Figure 2) dont :

- 1,6 Mm³ (soit 53%) sont consommés en dehors ZRE et issu d'un forage situé dans la ZRE unité de distribution de l'ARC;
- 925 000m³ (soit 31%) sont consommés dans la ZRE et issus d'un forage situé dans la ZRE ;
- 518 000m³ (soit 16%) sont consommés dans la ZRE et issus d'un forage situé en dehors de la ZRE.

Si on considère uniquement les unités de distribution alimentées par un forage situé dans le ZRE, celles-ci prélèvent 3,2Mm³ et consomment 2,5Mm³ (78 %), en 2021.

Il faut toutefois noter que l'année 2021 n'est pas représentative du fonctionnement du réseau de l'ARC. En effet des travaux ont été réalisés ce qui a entrainé une sollicitation accrue des forages de Baugy. A court termes, une fois le fonctionnement d'équilibre du réseau atteint (a priori d'ici 2024), l'ARC devrait être alimentée à hauteur de 40% par les forages de Baugy (ZRE de l'Aronde) et 60% par les forages des Hospices (vallée de l'Oise). A plus long terme, les travaux du projet MAGEO pourraient également impacter les captages des Hospices (si une pollution survenait notamment). Dans ces conditions un report temporaire des prélèvements sur les captages de Baugy serait nécessaire.

Si on considère la part des volumes prélevés par les forages de Baugy (qui alimentent l'unité de distribution de l'ARC) vis-à-vis de l'ensemble des volumes prélevés par les forages de la ZRE, on observe une diminution entre les années 2000 et 2017/2018. Cette part est passée de près de 70% à 50%. Depuis 2017, cette part remonte de 11 % (en 3 ans) pour atteindre en 2021, 61% (Figure 3).

Figure 3 : évolution de la part des volumes prélevés dans la ZRE et exportés en dehors de la ZRE sur l'unité de distribution de l'ARC

Cette hausse des volumes prélevés sur les forages de Baugy impacte également les volumes totaux prélevés sur la ZRE. En effet, on observe une hausse des volumes totaux prélevés sur la ZRE entre 2017

et 2021, + 852 710 m3 (+ 36 %) en 4 ans (Figure 4). Les principaux facteurs avancés pour expliquer cette hausse sont les suivants :

- En 2020 et 2021 des travaux sur les forages des Hospices ont été réalisé. De plus, des travaux de sectorisation du réseau ont également été réalisé afin de bien dissocier les secteurs approvisionnés par les forages des Hospices et ceux alimentés par les forages de Baugy. Ces travaux ont entrainé des arrêts de production des forages des Hospices de plusieurs semaines entrainant un report sur les forages de Baugy.
- La multiplication des années sèches qui a entrainé une augmentation des fuites de réseaux et une augmentation de la consommation via notamment une augmentation des piscines privées.
- La crise Covid (2020, 2021) a également impacté la consommation ainsi que les délais d'intervention en cas de détection de fuites par exemple.

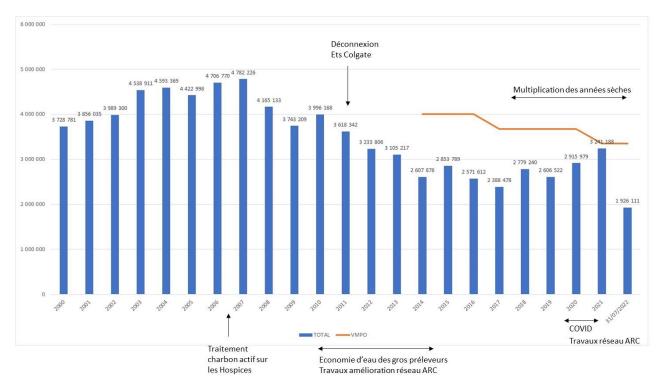


Figure 4 : évolutions des volumes prélevés (en m3) pour l'AEP sur la ZRE entre 2000 et juillet 2022 (source : SMOA sur la base des données DDT, AESN et collectivités)

Cette hausse des volumes prélevés depuis 2017 fait suite à une période de baisse entre 2007 et 2017, - 2 393 748 m3 (- 50 %) en 10 ans (Figure 4). Les principaux facteurs avancés pour expliquer cette baisse sont les suivants :

 Les forages des Hospices ont connu un problème d'Atrazine dans les années 2000 entrainant un report sur les forages de Baugy au début des années 2000. En 2006/2007, un traitement au charbon actif a été mis en place sur les Hospices permettant sa réutilisation. Cette remobilisation des forages des Hospices a permis de diminuer les prélèvements des forages de Baugy;

- En 2011, un travail a été réalisé avec l'entreprise Ets Colgate afin de les déconnecter du réseau d'eau potable. Cette entreprise possède maintenant son propre forage permettant ainsi de diminuer de près de 500 000m3 les volumes prélevés par l'ARC;
- De plus, un effort global d'économie d'eau a été réalisé par les gros préleveurs de l'ARC;
- Enfin, un travail de fond d'amélioration du réseau via la recherche de fuite notamment est mené par l'ARC.

2.1.1.3 Les zones d'activités de l'ARC alimentées par Baugy

Comme nous l'avons vu lors de l'étape 1, certaines zones d'activités de l'ARC sont alimentées par le réseau d'eau potable et notamment les forages de Baugy.

En 2022, les volumes concernés sont (source : ARC) :

- Zone industrielle Nord de Compiègne
 - o ALLARD (emballage): 207 m³. Cette entreprise possède également un forage en propre.
 - AFFIMET/REGEAL (aluminium): 1 500m³. Cette entreprise possède également un forage en propre.
 - EQIOM (centrale béton) : 108 m³. Cette entreprise possède également un forage en propre.
 - o SAFRAN: 2 500 m³
- Zone d'activité et commerciale de Jaux-Venette : CARREFOUR : 13 994 m³
- Parc d'activité du Bois de Plaisance (PLASTIC OMNIUM, BOSTIK, STOCKOMANI, ...) : attente retour délégataire
- Zone commerciale du Camp du Roy (GROUPE GEUDET, etc. : attente retour délégataire
- ZI « Bannière du roi » : OPELLA (ex SANOFI) 80 000 m³
- COLGATE: 2 079 m³
- AOC: 8 163 m³

Ces entreprises et activités ainsi identifiées pourraient faire l'objet d'actions dans le PTGE afin d'étudier la possibilité de les déconnecter pour tout ou partie du réseau d'eau potable. Un volet spécifique à l'usage eau potable non domestique pourrait ainsi être inclus dans le PTGE.

2.1.1.4 Historiques de la recherche de nouvelles ressources par l'ARC sur son territoire

Depuis les années 90, l'ARC a étudié différentes possibilités pour sécuriser l'adduction en eau potable sur son territoire (c'est-à-dire en dehors de la ZRE).

Tableau 1 : liste des études réalisées par l'ARC pour rechercher de nouvelles ressources sur son territoire (Source : révision SDAEP et recherche 3ème ressource en eau, 2012 – Hydratec et Eau&Industrie)

Année	Les études réalisées	Principales conclusions
1995	Etudier la possibilité de remettre en service	Eau toujours non conforme (traces de
	d'anciens captages de Choisy-au-Bac abandonnés pour cause de pollution	dioxanes et dioxalanes toujours présentes)
	industrielle	presentes
1997	Recherche d'eau sur la vallée sèche de Venette	Sensibilité aux pollutions véhiculées par l'Oise Urbanisation trop importante pour pouvoir définir un périmètre de protection
1999	Recherche sur le secteur ouest forestier	Bonne productivité mais taux en fer supérieur à la norme de potabilité Incidence sur les milieux (classés) trop important
	Recherche sur le secteur rive gauche, à proximité des Hospices	Bonne productivité mais taux en fer et manganèse supérieur à la norme de potabilité
2006	Mobilisation de ressources privées (ZI Le Meux, UTC)	Urbanisation trop importante pour pouvoir définir un périmètre de protection
		Exclusions de sites (Coudun/Braisnes- sur-Aronde) du fait de contamination accidentelle sur le territoire de l'ARC ou à proximité (chrome sur Villers-sur- Coudun)
2012	Etudes de 2 sites supplémentaires, en rive droite de l'Oise (Le Meux et Jaux)	Productivité inférieure à l'objectif fixé de 100m³/h ⇒ Exclusion du secteur rive droite des recherches du fait du manque de productivité
	Études de 2 sites d'implantation potentiels d'une prise d'eau superficielle – • aval La Croix-Saint-Ouen (proche Hospices) • amont Choisy au Bac – site qui n'est plus mobilisable aujourd'hui	Montant estimé, en 2012, des installations = entre 10M€ et 13M€

Ces recherches n'ont pas été concluantes pour un usage eau potable. Toutefois, certaines options écartées pour un usage eau potable, pourraient être réétudiées pour un autre usage dont les critères de qualité de l'eau notamment seraient moins strict que pour l'eau potable à usage domestique. Ces études pourraient être menées dans le cadre du PTGE.

2.1.2 Calculs des besoins prospectifs de l'eau potable à 2050

Lors de l'étape 1, une première estimation des besoins pour l'usage eau potable avait été réalisé à l'horizon 2030. Ce calcul a été repris afin de réaliser une estimation des besoins pour l'usage eau potable à l'horizon 2050. Dans un premier temps, nous calculons les besoins en eau potable de la population desservie par les 26 unités de distribution liées à la ZRE sur la base de l'augmentation de la population envisagée dans les documents d'urbanismes du territoire : les SCoT des Communautés de communes du Plateau Picard, de la Plaine d'Estrées, du Pays des Sources et du Clermontois et le PLUiH de l'ARC.

Ces documents d'urbanisme proposent des projections démographiques à l'horizon 2030 via la définition de taux de croissance annuel. Nous avons ici appliqué ces taux de croissance annuel jusqu'en 2050. La population de référence utilisée correspond aux données INSEE, 2019, de population communale totale.

La population communale des 52 communes desservies par une unité de distribution liée à la ZRE, en 2019 est de 54 944 habitants. 25 570 de ces habitants (soit 47%) habitent en dehors de la ZRE et correspondent à l'unité de distribution de l'ARC.

En 2050, la population de ces 52 communes passerait à 68 067 habitants dont 29 845 habitants (44%) pour l'unité de distribution de l'ARC.

L'évolution de population entre 2019 et 2050 pour chacune des 52 communes concernées est présentée en annexe 1.

Chacune de ces 52 communes est associée à une des 26 unités de distribution liées à la ZRE. Nous connaissons ainsi la population desservie par unité de distribution en 2019 et en 2050.

De plus, nous connaissons les forages de la ZRE qui alimentent chacune des unités de distribution, nous permettant ainsi de connaitre les volumes prélevés par chacune d'elles (Figure 2).

A l'aide de ces informations, nous pouvons ainsi estimer les volumes qui seraient prélevés en 2050 pour satisfaire les besoins des unités de distribution du territoire.

	Population 2019	Volume 2019 / 2020 prélevés	Population 2050	Volume 2050
Desservie par un captage de la ZRE	54 944	2 606 522 m3 / 2 915 979 m3	68 067	3 212 752 m3 / 3 584 058 m3
Dont part située hors ZRE	25 570 (47%)	1 390 317 m3 (53%) / 1 691 808m3 (58%)	29 845(44%)	1 622 788 m3 (50%) / 1 974 690 m3 (55%)

Figure 5 : évolution des volumes prélevés entre 2019 ou 2020 et 2050 par les unités de distribution desservie par un forage de la ZRE (source : SEPIA conseils)

Ainsi, en 2050, les volumes prélevés par les forages de la ZRE pour l'eau potable, seraient compris entre 3,2Mm³ et 3,5 Mm³ dont 1,6 Mm³ à 1,9 Mm³ exporté en dehors de la ZRE.

L'évolution des volumes prélevés entre 2019 ou 2020 et 2050 pour chacune des unités de distribution desservie par un forage de la ZRE est présentée en annexe 2.

Enfin, à ce volume calculé sur la seule base de l'augmentation de la population, nous ajoutons une marge de 10% afin de prendre en compte le développement économique du territoire d'ici 2050. En effet, les zones d'activités, notamment sur le territoire de l'ARC sont nombreuses et nous ne pouvons prédire à ce stade, l'impact réel des projets MAGEO et Canal Seine Nord-Europe sur le développement économique du territoire.

En ajoutant cette marge de 10%, les besoins de prélèvements, pour l'usage eau potable, en 2050 pourraient être compris entre 3 534 027m3 et 3 942 464m3.

Pour rappel la part du VMPO dédiée à l'eau potable est de 3 352 941m³. Ainsi, en 2050 ce volume serait dépassé. Le besoin complémentaire, pour l'usage eau potable, seraient compris entre 180 000m³ et 590 000m³.

2.2 Pour l'irrigation

2.2.1 Apports de compléments à l'état des lieux

2.2.1.1 Les actions d'économies d'eau déjà menées par les irrigants de l'Aronde

Du fait des contraintes existantes sur l'eau dans la ZRE, les volumes hectares de référence présentés en annexe du règlement de l'OUGC pour les cultures éligibles à un volume d'eau, et utilisés pour l'attribution des volumes à chaque irrigant, sont inférieurs à ceux utilisés dans les départements voisins : par exemple sur pomme de terre le volume hectare de référence utilisé par l'OUGC de l'Aronde est de 1 800m³/ha contre 2 500m³/ha dans le département de la Somme (- 28 %).

2.2.1.2 Actualisation des connaissances sur les pratiques d'irrigation dans la ZRE

En 2011, le projet O'Oise Aronde, a permis de réaliser une enquête auprès des irrigants de l'Aronde afin notamment de connaître leur pratique en termes d'irrigation : matériel utilisé, moyen utilisé pour piloter l'irrigation, etc. Comme indiqué dans le rapport d'état des lieux, ces données doivent être rapidement actualisées afin de pouvoir alimenter les réflexions sur les actions à mener dans le cadre du PTGE.

Dans ce sens, des premiers éléments partiels ont été transmis par l'association des irrigants de l'Aronde en mars 2023 :

- Utilisation d'outils d'aide à la décision (OAD) par 12 irrigants sur 28. L'outil Irrélis est l'outil majoritairement utilisés.
- Certains irrigants utilisent des sondes hygrométriques et réalisent des bilans hydriques
- En termes de matériel utilisé par les 12 irrigants ayant répondu au sondage :
 - o 6 irrigants utilisent des enrouleurs à canon
 - 4 irrigants utilisent des rampes sur enrouleurs
 - 1 irrigant utilise une rampe frontale
 - 1 irrigant utilise du goutte à goutte

Ces éléments devront être complétés pour les 31 irrigants de l'Aronde¹. De plus, il serait également utile de compléter ces informations par des éléments quantitatifs sur les économies d'eau permises par ces pratiques (réduction des volumes prélevés à l'hectare, ...).

2.2.1.3 Les bassins de crues de l'Oise – une potentielle ressource pour l'irrigation ?

L'Oise, peut connaître d'importantes crues. L'Entente Oise – Aisne gère des casiers de crues dans le lit majeur de l'Oise, en rive droite et en rive gauche, à hauteur de Rivecourt, Longueuil-Sainte-Marie, Chevrières, Pontpoint, Verberie (Figure 6). Les casiers situés en rive droite de l'Oise se situent à environ 15km à vol d'oiseaux du bassin de l'Aronde et de la ZRE.

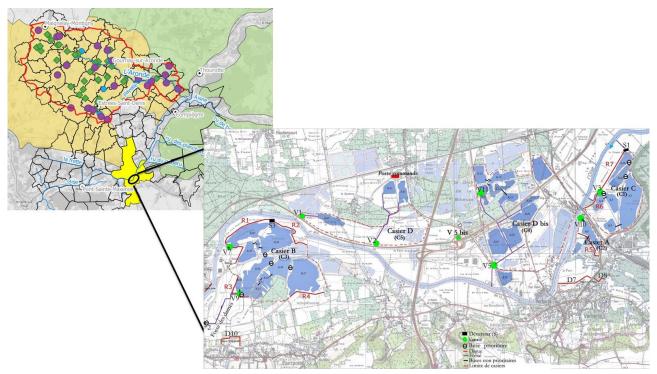


Figure 6 : localisation des casiers de crues de l'Oise et de la ZRE (source : Entente Oise - Aisne et SEPIA Conseils)

Ces casiers se remplissent lors de fortes crues de l'Oise c'est-à-dire pour des crues de période de retour 20 ans minimum. Le remplissage de ces casiers est gravitaire : aucun pompage n'est nécessaire. L'eau est conservée dans les casiers le temps du passage de la crue uniquement. En effet les casiers doivent être disponibles pour la crue suivante. Ainsi, la majorité du temps ces casiers ne sont pas en eau. De plus, de nombreux usages sont présents au sein de ces casiers. Ainsi, en cas de crues, leur présence nécessite un retour rapide à des niveaux d'eau « normaux »².

Après échange avec l'Entente Oise-Aisne, plusieurs pistes pourraient être étudiées dans le cadre du PTGE :

Mobilisation de l'Étang du Petit Pâtis (Rivecourt), aujourd'hui propriété de Lafarge.

² Entente Oise-Aisne, février 2023

¹ Selon le plan annuel de répartition 2022, validé par la DDT de l'Oise le 18/07/2022.

Cet étang fait l'objet de nombreuses convoitises pour servir de réserve pour l'irrigation, de remblaiement pour MAGEO, de surfaces de compensation pour Lafarge ou encore pour servir de base de loisir pour la commune de Rivecourt. De plus avant d'envisager sa mobilisation pour stocker de l'eau, il sera nécessaire d'étudier la perméabilité du sous-sol. Ce secteur pourrait conserver l'eau si le sous-sol est imperméable, ce qui n'est pas garantie étant donnée sa proximité avec l'Oise. Sa capacité de stockage maximale est aujourd'hui estimée à 1 Mm³.

Mobilisation d'étangs situés plus au nord

Là encore l'imperméabilité du sous-sol devra être étudiée ainsi que les modalités remplissage. De plus, la maîtrise foncière de ces étangs n'est pas garantie.

Ainsi la mobilisation éventuelle des casiers crue de l'Oise comme réserve pour l'irrigation nécessitent d'approfondir les sujets suivants :

- Les usages associés aux casiers
- La disponibilité du foncier
- L'imperméabilité du sous-sol

2.2.2 Calculs des besoins prospectifs pour l'irrigation en 2050

Afin d'estimer les besoins en eau pour l'irrigation à l'horizon 2050, plusieurs critères doivent être pris en compte :

- L'augmentation des besoins des cultures du fait du changement climatique et notamment de l'augmentation du déficit du bilan hydrique (cf. rapport étape 1).
- L'augmentation des surfaces irriguées pour les irrigants en place et par l'ajout de nouveaux irrigants
- ➤ Dans un premier temps, nous estimons les besoins en eau dû à l'augmentation des surfaces irriguées sur la ZRE.

Les travaux de la Chambre d'agriculture de l'Oise fournissent des informations concernant la SAU totale des exploitations irrigantes de la ZRE de l'Aronde ainsi que les surfaces irriguées associées. Ces éléments nous permettent d'estimer une tendance à la hausse des surfaces irriguées de 10% entre 2010 et 2020 (Figure 7).

	Exploitations i ZRE de l	tendance	
	2010 2020		
SAU totale (ha)	env 7 000	8 432	20%
Surface irriguée (ha)	1 800	1 981	10%

Figure 7 : Estimation des évolutions des surfaces irriguées entre 2010 et 2020 (source : Chambre d'agriculture de l'Oise – projet O'Oise Aronde pour les données 2010 et OUGC pour les données 2020)

Après échange avec la profession agricole, il est proposé de prendre en compte une hausse de 20% tous les 10 ans des surfaces irriguées.

Ainsi, en 2050, les surfaces irriguées sur la ZRE seraient de 3 423 ha contre 1 981 ha en 2020.

En se basant sur un volume prélevé, en 2020, égal à la part du VMPO dédié à l'irrigation (soit 2 263 235m³), les besoins en eau en 2050, des surfaces irriguées de la ZRE, seraient de 3 910 870m³.

➤ Dans un second temps, nous calculons l'augmentation des besoins en eau des cultures du fait d'une diminution du bilan hydrique. Pour rappel, le bilan hydrique correspond à la différence entre les précipitations (P) et l'évapotranspiration (ETP) : P — ETP.

A l'horizon 2050, les prospectives climatiques sur le territoire prédisent une stabilité des précipitations et une augmentation de l'ETP entrainant ainsi une diminution du bilan hydrique³:

```
P → - ETP / => bilan hydrique \
```

La diminution du bilan hydrique annuel serait d'environ 50 à 60 mm sur le territoire soit une augmentation des besoins en eau de 50 à 60mm par an pour garantir les besoins de la plante en 2050. Pour la suite de nos calculs nous considèrerons une diminution du bilan hydrique de 60mm.

En 2050, 3 423 ha de surfaces irriguées seraient présentes sur la ZRE.

Le besoin supplémentaire d'eau pour ces surfaces irriguées serait de 3 423ha x 60mm soit 2 053 800m³ (2Mm³).

En 2050, les besoins en eau pour l'irrigation seraient de 3,9Mm³ + 2Mm³ = 5,9 Mm³.

Pour rappel la part du VMPO dédiée à l'irrigation est de 2 263 235m³. Ainsi, en 2050 ce volume serait dépassé. Le besoin complémentaire, pour l'irrigation, seraient compris de 3,7Mm³.

2.3 Pour les autres activités économiques et l'industrie

2.3.1 Calculs des besoins prospectifs des autres activités économiques et de l'industrie en 2050

Nous considérons que les besoins en eau des autres activités économiques et de l'industries présentes sur la ZRE et qui possèdent un forage dans la ZRE sont constante dans le temps, sauf pour le Golf de Monchy-Humières.

Pour ce dernier nous considérons une augmentation des besoins en eau du fait du changement climatique et de la diminution du bilan hydrique en particulier.

Comme pour l'irrigation, nous considérons une diminution du bilan hydrique de l'ordre de 60mm en 2050. La superficie du Golf est de 56ha⁴.

⁴ https://www.golfduchateau.com/plants

³ Agro-Transfert – étude Res'EAU – cf. rapport étape 1

Ainsi le besoin en eau complémentaire du Golf serait de 56ha x 60 mm soit 33 600m³ en 2050 par rapport à 2021.

Code BSS	Commune	Exploitant	2021		besoin 2050	
51997_017	MONCHY- HUMIERES	GOLF DE MONCHY HUMIERES	14 878		48 478	
BSS004AYYR/X	MENEVILLERS	MVS ENERGIE	160		200	
01042X0110/F-1999 (BSS000GZUB)	FRANCIERES	BRICOUT	1 461		1 500	
00816X0071/F-IRRI (BSS000FRHB)	GOURNAY-SUR- ARONDE	STORENGY	969		1 000	
(01042X0145/F_2007)	MOYVILLERS	SARL PROPAUTO	3 237		3 300	
01042X0105/F1	STRUBE	2 733		2 800		
	23 438		57 278			
	VMPO (m3)					

Figure 8 : besoins en eau, en 2050, pour les autres activités économiques et l'industrie possédant un forage dans la ZRE

En 2050, les besoins en eau pour les autres activités économiques et l'industrie seraient de 57 000m³. Pour rappel la part du VMPO dédiée aux autres activités économiques et à l'industrie est de 83 824m³. Ainsi, en 2050 ce volume ne serait pas dépassé.

3 Bilan et synthèse des enjeux

3.1 Des besoins qui doubleraient, tous usages confondus, en 2050

En considérant les éléments précédents, les besoins de prélèvements sur la ZRE doubleraient, si la tendance actuelle était poursuivie (Figure 9).

usages	VMPO (m3)	besoins 2050 (m3)	évolution des besoins au regard du VMPO (m3)
AEP	3 352 941	3 942 464	589 523
IRR	2 263 235	5 964 670	3 701 435
IND	83 824	57 278	-26 546
TOTAL	5 700 000	9 964 412	4 264 412

Figure 9 : synthèse des besoins en 2050 par usage sur la ZRE et comparaison au VMPO (source : SEPIA Conseils)

Pour rappel le VMPO est une limite maximale de prélèvements pour garantir les usages du territoire et notamment garantir le bon fonctionnement de ses milieux. **Ce n'est donc pas un objectif à atteindre.**

Ainsi, la poursuite de la tendance actuelle n'est pas envisageable sur le territoire de l'Aronde. Des actions doivent être mises en place pour garantir l'équilibre quantitatif de la ressource tout en anticipant l'évolution des besoins estimés pour 2050

3.2 Synthèse des enjeux

Lors de l'audit patrimonial différents enjeux étaient ressortis. Le travail réalisé lors des étapes 1 et 2 de la présente étude a déjà permis d'apporter des éléments de réponse et/ou de réflexion pour la suite de la démarche de construction du PTGE.

Les enjeux identifiés	Lien avec l'état des lieux/ diagnostic
⇒ Des enjeux majoritairement orientés sur l'eau :	
La <u>préservation de la ressource en eau</u> (quantité et qualité) et des richesses du territoire.	ZRE, baisse des débits, zones de recharge / pesticides, nitrates
<u>L'innovation pour aller vers plus de sobriété</u> dans les usages de l'eau	Pistes de solutions sur l'efficience des réseaux et matériels (AEP, IRR), application web suivi prélèvements, etc.
Garantir l'accès à l'eau à tous / pour tous les usages	Objectif du PTGE – modalité à discuter dans la suite de la démarche
Repenser l'aménagement du territoire et la manière de construire (infiltrations / artificialisation).	Lien avec les SCoT, gestion des eaux pluviales
Améliorer la connaissance et le partage des données pour mieux comprendre le	Travail étape 1 + travail en cours sur recharge nappe, à venir avec le BRGM, etc.

fonctionnement de l'hydrosystème et le gérer :							
vers un pilotage dynamique de la ressource en							
eau (nappe)							
⇒ Des enjeux qui dépassent largement la questi	on de l'	eau					
Conserver la <u>naturalité du fond de vallée</u> et les		CTEC porté par le SMOA,					
fonctionnalités des cours d'eau et zones	\longleftrightarrow	Lien avec les documents d'urbanisme, le					
<u>humides</u>		cadre de vie à envisager dans la suite?					
Préserver l'activité agricole du territoire (pas		Duásantation de l'agriculture et des					
seulement l'agriculture irrigante mais tous les	\longleftrightarrow	Présentation de l'agriculture et des filières présentes					
systèmes)		imeres presentes					
Sécuriser la production alimentaire française	→	Non développé dans l'état des lieux					
	- 🗡	A prendre en compte dans la suite de la démarche					
Assurer la paix sociale		demarche					
Des enjeux en lien direct avec la réalisation du	u PTGE						
Avoir une vision partagée du constat et des	-	Travail initié dans l'étape 1 – à poursuivre					
problèmes pour pouvoir avancer							
<u>Trouver de l'intérêt commun</u> entre les différents							
acteurs							
Avoir un <u>PTGE flexible</u>							
<u>Donner de la perspective</u> aux acteurs alentours							
Être dans le désir plutôt que la contrainte							
Anticiper les évolutions (climatiques,							
démographiques, développement du territoire)	\longleftrightarrow	Travail étape 1 et 2 de la présente démarche					
et préparer l'adaptation (si nécessaire)		demarene					

L'analyse croisée entre les éléments techniques produits et l'audit patrimonial met en lumière le besoin d'un projet partagé pour répondre à la complexité de la situation et satisfaire l'ensemble des parties prenantes.

1. Au-delà de l'eau, des enjeux multiples à concilier :

- Des enjeux d'acquisition et de partage de la connaissance et des données
- Des enjeux en termes d'aménagement et de développement économique global du territoire (et d'organisation du territoire)
- Des enjeux de gestion, partage et préservation de la ressource et des milieux
- 2. <u>Des besoins en eau qui pourrait doubler d'ici 2050, tous usages confondus, si l'on poursuit, la/les tendance(s) actuelle(s).</u>
 - Et dans le même temps, une incertitude sur la capacité de la nappe à soutenir le VMPO actuel dans un contexte de changement climatique.

Ainsi, satisfaire les besoins prospectifs en eau à l'horizon 2050 appelle une réflexion globale et partagée, tous usages confondus.

4 Le modèle pluie-débit

4.1 Méthodologie

4.1.1 Données de base exploitées

Les données suivantes ont été exploitées :

Paramètre	Donnée exploitée
Précipitations et ETP	Données mensuelles de la station Météo France de Margny-lès-Compiègne
Débit de l'Aronde	Chroniques de la station de Clairoix
Nappe de la Craie	Chroniques des piézomètres d'Estrées-Saint-Denis et Lieuvillers
Occupation du sol	Corine Land Cover ©, RPG (2020)
Prélèvements AEP ⁵	DDT60, AESN, collectivités et leur délégataire (Saur et Suez)
Prélèvements agricoles ⁴	DDT60, AESN, CA60
Prélèvements industriels ⁴	SMOA

4.1.2 Structuration du modèle

4.1.2.1 Structure générale du modèle

Le modèle utilisé est de type « modèle à réservoirs », couramment utilisé pour reconstituer le débit d'un cours d'eau. Il reconstitue la transformation « pluie-débit » par l'intermédiaire de la vidange d'une superposition de réservoirs caractérisés par leurs courbes de tarissement.

Concrètement, le modèle utilisé comprend 3 niveaux de réservoirs :

- un réservoir superficiel qui simule le fonctionnement des écoulements peu profonds, c'est-àdire les écoulement qui circulent à faible profondeur dans le sol et qui rejoignent le cours d'eau dans un délai court (de l'ordre du mois),
- un réservoir intermédiaire qui simule le fonctionnement des écoulements moyennement profonds, c'est-à-dire les écoulements qui s'infiltrent dans le sol et le sous-sol et rejoignent le lit mineur du cours d'eau à l'amont du point de calcul dans un délai d'un à plusieurs mois ; ces écoulement constituent le débit de base du cours d'eau, et alimentent notamment les sources qui soutiennent le débit d'étiage,
- un réservoir profond qui simule le fonctionnement des écoulements profonds, c'est-à-dire les écoulements qui s'infiltrent dans le sous-sol et qui ne rejoignent pas le lit mineur du cours d'eau à l'amont du point de calcul.

Le débit du cours d'eau est donc reconstitué avec la somme des débits de ruissellement et des débits de vidange des réservoirs superficiels et intermédiaire :

 le réservoir superficiel est alimenté par le débordement de la réserve utile contenue dans le sol (cf. paragraphe suivant),

- le réservoir intermédiaire est alimenté par drainance, par une part constante de l'eau stockée dans le réservoir superficiel,
- Les réservoirs superficiel et intermédiaire se vidangent dans le cours d'eau selon une loi de tarissement exponentiel (loi de Maillet).

4.1.2.2 Modélisation de la Réserve Utile (RU) en eau dans les sols

La Réserve Utile en eau d'un sol est la quantité d'eau qu'un sol peut absorber et restituer aux plantes et à l'évaporation.

Au cours d'un mois, la Réserve Utile du sol est utilisée par les plantes (évapotranspiration) et se recharge avec les pluies jusqu'à atteindre, le cas échéant, sa hauteur maximale. Le modèle considère que l'eau excédentaire ruisselle ou s'infiltre alors dans le sol.

4.1.2.3 Prise en compte des prélèvements dans la nappe

Les prélèvements pour la production d'eau potable, l'irrigation et les usages industriels sont soustraits au niveau du réservoir intermédiaire.

Les hypothèses suivantes ont été retenues pour représenter les prélèvements au pas de temps mensuel :

- <u>Prélèvements agricoles</u> (et forage du golf): répartition du volume annuel entre mai et septembre de la façon suivante: 15% en mai / 20% en juin / 30% en juillet / 20% en août / 15% en septembre.
- <u>Prélèvements AEP</u>: l'analyse des données transmises au pas de temps mensuel pour les forages structurants a confirmé que les prélèvements sont globalement stables au long de l'année. Les prélèvements mensuels ont donc été estimés en divisant par 12 les prélèvements totaux annuels estimés lors de l'état des lieux.
- <u>Prélèvements industriels</u>: Les prélèvements mensuels ont été estimés en divisant par 12 les prélèvements totaux annuels estimés lors de l'état des lieux.

4.1.2.4 Synthèse de la structuration du modèle

Le schéma présenté en Figure 4 présente la structure générale du modèle.

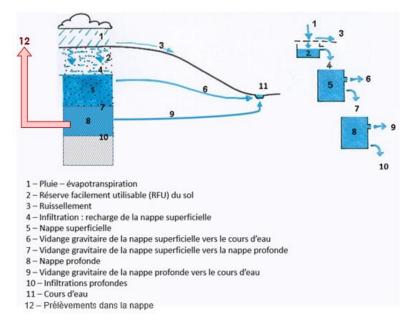


Figure 10 : Schéma conceptuel de fonctionnement du modèle hydrologique (d'après BRGM)

<u>Remarque</u>: Afin de représenter au mieux le fonctionnement de la nappe de la Craie, et après analyse des suivis piézométriques et échange avec le BRGM, un déphasage a été intégré pour représenter le transfert n°2 entre la RFU et la nappe superficielle (déphasage d'1 mois) et le transfert n°7 entre la nappe superficielle et la nappe profonde (déphasage de 4 mois).

4.1.2.5 Calage du modèle

Les différents paramètres du modèle sont calés par rapports à la chronique des débits moyens mensuels de l'Aronde à Clairoix par ajustements itératifs sur la base d'une première simulation avec des paramètres réalistes au vu de la taille du bassin versant, de l'occupation du sol et de l'allure des courbes de tarissement observées sur les suivis piézométriques.

<u>Remarque importante</u>: L'objectif de ce calage n'est pas d'obtenir une reconstitution fine du débit de l'Aronde mais de reconstituer globalement les tendances de variations au pas de temps mensuel, avec une fidélité suffisante pour pouvoir analyser l'ordre de grandeur des impacts relatifs des prélèvements.

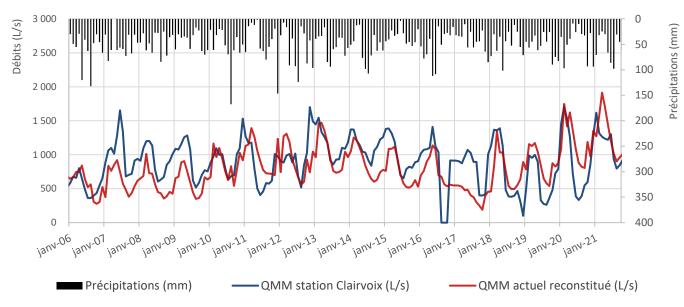


Figure 11 : Comparaison du débit moyen mensuel modélisé au débit moyen mensuel mesuré à la station de Clairoix

4.2 Analyse de l'impact des prélèvements sur le débit de l'Aronde

4.2.1 Préliminaire - analyse globale de l'ordre de grandeur des prélèvements

La comparaison de ordres de grandeur des volumes totaux annuels de précipitations, d'écoulement de l'Aronde et des différents montrent que :

- En ordre de grandeur, les prélèvements industriels peuvent être considérés comme négligeable en comparaison des prélèvements pour l'AEP et l'irrigation (globalement proches);
- Les prélèvements pour l'eau potable et l'irrigation représentent chacun environ 10% du volume total annuel s'écoulant de l'Aronde et moins d'1% du total des précipitations.

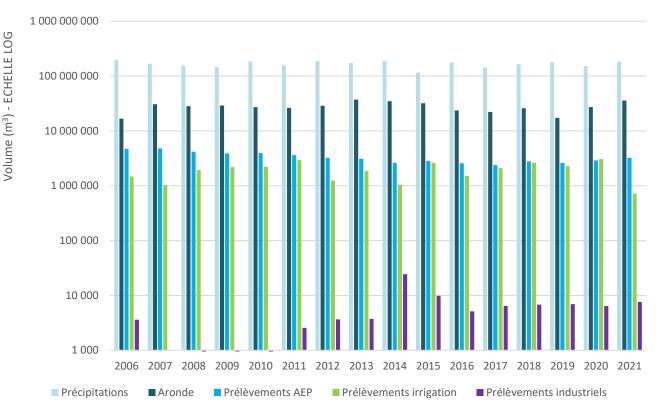


Figure 12 : Comparaison des volumes totaux annuels de précipitations, d'écoulement de l'Aronde et de prélèvements pour la production d'eau potable, l'irrigation agricole et l'industrie et autres usages économiques

4.2.2 Analyse des résultats du modèle au pas de temps mensuel

4.2.2.1 Evaluation de l'impact des différents prélèvements au pas de temps mensuel

Une fois le modèle principal calé, l'impact relatif de chaque prélèvement sur le débit de l'Aronde est estimé en comparant le débit reconstitué de référence issu du calage principal avec le débit modélisé sans tenir compte du prélèvement en question.

Cette étape repose donc sur :

- Un modèle considérant l'ensemble des prélèvements agricoles et industriels, mais aucun prélèvement pour la production d'eau potable,
- Un modèle considérant l'ensemble pour la production d'eau potable et industriels, mais aucun prélèvement agricole,
- Un modèle considérant l'ensemble pour la production d'eau potable et l'irrigation, mais aucun prélèvement industriel,
- Un modèle ne considérant absolument aucun prélèvement (reconstitution du débit naturel non influencé).

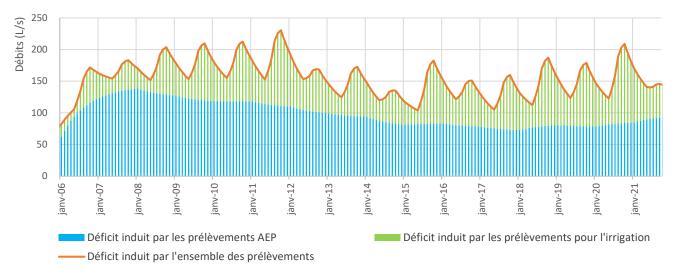


Figure 13 : Impacts relatifs des prélèvements sur le débit de l'Aronde

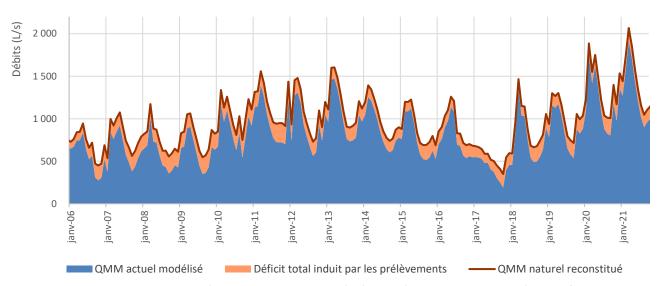


Figure 14 : Ecarts entre le débit moyen mensuel modélisé et le débit naturel reconstitué sans influence des prélèvements dans la nappe

4.2.2.2 Bilans à l'échelle de l'intervalle d'analyse (moyennes sur 15 ans)

En moyenne, les prélèvements à l'échelle de la ZRE ont impliqué un déficit de 150 à 200 l/s sur le débit de l'Aronde.

Par ailleurs, du fait du léger déphasage entre la saisonnalité des prélèvements pour l'irrigation et leurs impacts sur le débit de l'Aronde (décalage d'environ 3-4 mois, dû à l'inertie du fonctionnement de la nappe), l'impact maximal des prélèvements est donc atteint en moyenne en septembre, mois au cours duquel le débit de l'Aronde est le plus faible.

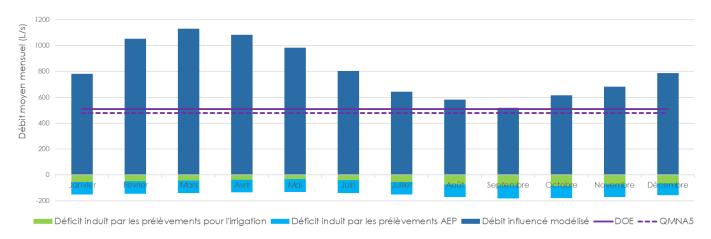


Figure 15 : Déficits moyens induits par les prélèvements pour la production d'eau potable et l'irrigation

En période de basses eaux, ce déficit représente 25 à 35% du Débit d'Objectif d'Etiage (dont en moyenne 20% causé par les prélèvements AEP et 5 à 15% par les prélèvements pour l'irrigation).

Figure 16 : Déficits moyens induits par les prélèvements pour la production d'eau potable et l'irrigation en pourcentage du DOE

5 Annexes

5.1 Annexe 1 - estimation de la population à 2050

Commune	EPCI	communes	part population	population	% croissance	population desservie	sources
		ZRE	desservie	INSEE 2019	population	en 2050	
BIENVILLE	ARC	oui	100%	453	0,50%	529	PLUiH
LACHELLE	ARC	oui	100%	732	0,50%	854	PLUiH
ARMANCOURT COMPIEGNE	ARC	non	50% 100%	182 20 308	0,50% 0,50%	213 23 703	PLUiH PLUiH
JAUX	ARC	non	33%	767	0,50%	895	PLUiH
JONQUIERES	ARC	non	33%	201	0,50%	234	PLUiH
LE MEUX	ARC	non	33%	776	0,50%	905	PLUiH
VENETTE	ARC	non	33%	2 884	0,50%	3 366	PLUiH
ARSY	CCPE	oui	100%	769	1,1%	1 079	évolution pop CCPE entre 2011 et 2015 source : Suivi du SCoT de la CCPE – bilan à 6 ans - 2019
BAILLEUL-LE-SOC	CCPE	oui	100%	646	1,1%	907	évolution pop CCPE entre 2011 et 2015 source : Suivi du SCoT de la CCPE – bilan à 6 ans - 2019
ESTREES-SAINT-DENIS	CCPE	oui	100%	3 759	1,1%	5 277	évolution pop CCPE entre 2011 et 2015 source : Suivi du SCoT de la CCPE – bilan à 6 ans - 2019
FRANCIERES	CCPE	oui	100%	549	1,1%	771	évolution pop CCPE entre 2011 et 2015 source : Suivi du SCoT de la CCPE – bilan à 6 ans - 2019
GRANDFRESNOY	CCPE	oui	100%	1 792	1,1%	2 515	évolution pop CCPE entre 2011 et 2015 source : Suivi du SCoT de la CCPE – bilan à 6 ans - 2019
HEMEVILLERS	CCPE	oui	100%	468	1,1%	657	évolution pop CCPE entre 2011 et 2015 source : Suivi du SCoT de la CCPE – bilan à 6 ans - 2019
MONTMARTIN	CCPE	oui	100%	264	1,1%	371	évolution pop CCPE entre 2011 et 2015 source : Suivi du SCoT de la CCPE – bilan à 6 ans - 2019
MOYVILLERS	CCPE	oui	100%	696	1,1%	977	évolution pop CCPE entre 2011 et 2015 source : Suivi du SCoT de la CCPE – bilan à 6 ans - 2019
REMY	CCPE	oui	100%	1 920	1,1%	2 695	évolution pop CCPE entre 2011 et 2015 source : Suivi du SCoT de la CCPE – bilan à 6 ans - 2019
FOUILLEUSE	CC du Clermontois	oui	100%	146	1,6%	239	évolution de 1,6% par an environ de la population de la commune entre 2011 et 2016 source : projet de territoire 2021 - CCC
ANTHEUIL-PORTES	CCPS	oui	100%	414	1,2%	599	SCoT CCPS, 2013
BAUGY	CCPS	oui	100%	266	1,2%	385	SCoT CCPS, 2013
BELLOY	CCPS	oui	100%	84	1,2%	122	SCoT CCPS, 2013
BRAISNES-SUR-ARONDE	CCPS	oui	100%	172	1,2%	249	SCoT CCPS, 2013
COUDUN GIRAUMONT	CCPS	oui	100% 100%	1 067 532	1,2% 1,2%	1 544 770	SCoT CCPS, 2013 SCoT CCPS, 2013
GOURNAY-SUR-ARONDE	CCPS	oui	100%	550	1,2%	796	SCoT CCPS, 2013
LATAULE	CCPS	oui	100%	119	1,2%	172	SCoT CCPS, 2013
MONCHY-HUMIERES	CCPS	oui	100%	787	1,2%	1 139	SCoT CCPS, 2013
NEUFVY-SUR-ARONDE	CCPS	oui	100%	280	1,2%	405	SCoT CCPS, 2013
VIGNEMONT	CCPS	oui	100%	433	1,2%	627	SCoT CCPS, 2013
VILLERS-SUR-COUDUN	CCPS	oui	100%	1 390	1,2%	2 012	SCoT CCPS, 2013 taux croissance moyen entre 2011 et 2016 sur territoire du
ANGIVILLERS	CCPP	oui	100%	172	0,4%	195	SCOT - projection non dispo en nov 2022 -SCOT en cours) taux croissance moyen entre 2011 et 2016 sur territoire du
CERNOY	CCPP	oui	100%	295	0,4%	334	SCOT - projection non dispo en nov 2022 -SCOT en cours) taux croissance moyen entre 2011 et 2016 sur territoire du
COIVREL	CCPP	oui	100%	244	0,4%	276	SCOT - projection non dispo en nov 2022 -SCOT en cours) taux croissance moyen entre 2011 et 2016 sur territoire du
CRESSONSACQ	CCPP	oui	100%	445	0,4%	504	SCOT - projection non dispo en nov 2022 -SCOT en cours) taux croissance moyen entre 2011 et 2016 sur territoire du
ERQUINVILLERS	CCPP	oui	100%	184	0,4%	208	SCoT - projection non dispo en nov 2022 -SCoT en cours)
GRANDVILLERS-AUX-BOIS	CCPP	oui	100%	306	0,4%	346	taux croissance moyen entre 2011 et 2016 sur territoire du SCoT - projection non dispo en nov 2022 - SCoT en cours)
LA NEUVILLE-ROY	CCPP	oui	100%	927	0,4%	1 049	taux croissance moyen entre 2011 et 2016 sur territoire du SCoT - projection non dispo en nov 2022 -SCoT en cours)
LE PLESSIER-SUR-SAINT- JUST	CCPP	oui	100%	528	0,4%	598	taux croissance moyen entre 2011 et 2016 sur territoire du SCoT - projection non dispo en nov 2022 -SCoT en cours)
LEGLANTIERS	CCPP	oui	100%	551	0,4%	624	taux croissance moyen entre 2011 et 2016 sur territoire du SCoT - projection non dispo en nov 2022 -SCoT en cours)
LIEUVILLERS	CCPP	oui	100%	705	0,4%	798	taux croissance moyen entre 2011 et 2016 sur territoire du SCOT - projection non dispo en nov 2022 - SCOT en cours)
MAIGNELAY-MONTIGNY	CCPP	oui	100%	2 678	0,4%	3 031	taux croissance moyen entre 2011 et 2016 sur territoire du SCOT - projection non dispo en nov 2022 -SCOT en cours)
MENEVILLERS	CCPP	oui	100%	105	0,4%	119	taux croissance moyen entre 2011 et 2016 sur territoire du SCoT - projection non dispo en nov 2022 -SCoT en cours) taux croissance moyen entre 2011 et 2016 sur territoire du
MERY-LA-BATAILLE	ССРР	oui	100%	631	0,4%	714	SCoT - projection non dispo en nov 2022 -SCoT en cours) taux croissance moyen entre 2011 et 2016 sur territoire du
MONTGERAIN	CCPP	oui	100%	174	0,4%	197	taux croissance moyen entre 2011 et 2016 sur territoire du SCoT - projection non dispo en nov 2022 -SCoT en cours) taux croissance moyen entre 2011 et 2016 sur territoire du
MONTIERS	CCPP	oui	100%	412	0,4%	466	taux croissance moyen entre 2011 et 2010 sur territoire du SCoT - projection non dispo en nov 2022 -SCoT en cours) taux croissance moyen entre 2011 et 2016 sur territoire du
MOYENNEVILLE	CCPP	oui	100%	609	0,4%	689	taux croissance moyen entre 2011 et 2010 sur territoire du SCoT - projection non dispo en nov 2022 -SCoT en cours) taux croissance moyen entre 2011 et 2016 sur territoire du
NOROY	ССРР	oui	100%	250	0,4%	283	taux croissance moyen entre 2011 et 2016 sur territoire du SCoT - projection non dispo en nov 2022 -SCoT en cours) taux croissance moyen entre 2011 et 2016 sur territoire du
PRONLEROY	CCPP	oui	100%	377	0,4%	427	SCoT - projection non dispo en nov 2022 -SCoT en cours) taux croissance moyen entre 2011 et 2016 sur territoire du
RAVENEL	CCPP	oui	100%	1 071	0,4%	1 212	SCoT - projection non dispo en nov 2022 -SCoT en cours)
ROUVILLERS	CCPP	oui	100%	273	0,4%	309	taux croissance moyen entre 2011 et 2016 sur territoire du SCOT - projection non dispo en nov 2022 -SCOT en cours)
SAINT-MARTIN-AUX-BOIS	ССРР	oui	100%	322	0,4%	364	taux croissance moyen entre 2011 et 2016 sur territoire du SCoT - projection non dispo en nov 2022 -SCoT en cours)
WACQUEMOULIN	ССРР	oui	100%	280	0,4%	317	taux croissance moyen entre 2011 et 2016 sur territoire du SCoT - projection non dispo en nov 2022 -SCoT en cours)
TOTAL				54 944		68 067	

5.2 Annexe 2 - estimation des volumes prélevés en 2050 par unité de distribution

unité de distribution	code BSS forages ZRE	population desservie en 2019	population desservie en 2050	volume prélevé en 2019	estimation volume prélevé en 2050	volume prélevé en 2020	estimation volume prélevé en 2050
Maignelay/Coivrel	00815X0064 00808X0010	2 922	3 307	200 921	227 390	149 449	169 137
SIAEP des Planiques (Saint-Martin-aux- Bois/Montgerain/Menevillers)	00815X0073 00815X0071	601	680	24 877	28 154	27 997	31 685
Méry-la-Bataille	00816X0044	631	714	29 561	33 455	32 738	37 051
Neufvy-sur-Aronde	00816X0062	280	405	14 711	21 293	16 989	24 590
SIVOM Belloy/Cuvilly/Lataule	00816X0062	203	294		0		0
Bailleul le soc	01041X0002	646	907	27 932	39 209	36 010	50 549
La Neuville Roy/Montiers	01041X0029	1 339	1 515	60 091	68 007	75 388	85 319
SIEAP Pronleroy (Cressonsacq/Grandvillers aux Bois/Pronleroy/Rouvillers)	01041X0031	1 401	1 586	71 097	80 463	84 583	95 726
Moyenneville/Wacquemoulin	01042X0002	889	1 006	46 636	52 780	40 815	46 192
Gournay-sur-Aronde	01042X0017	550	796	41 089	59 473	49 855	72 161
Estrées-Saint-Denis	01042X0055 01042X0094 01042X0096 01042X0148	3 759	5 277	319 181	448 046	320 422	449 788
Moyvillers	01042X0066 01046X0122	696	977	37 775	53 026	36 716	51 540
Hemevillers/Montmartin/Francière	01042X0090	1 281	1 798	52 698	73 974	59 102	82 964
SIEA Monchy-Humières (Baugy/Monchy- Humières/Braisnes-sur-Aronde/Lachelle)	01043X0022	1 957	2 627	138 659	186 165	124 325	166 920
Compiègne/Venette/Armancourt/Jaux/Jon cquières/Le Meux/Bienville	01043X0073 01043X0074 01044X0155	25 570	29 845	1 390 317	1 622 788	1 691 808	1 974 690
Giraumont/Coudun	01044X0044	1 599	2 314	80 198	116 081	92 990	134 596
Villers-sur-Coudun	01044X0160 01044X0028	1 390	2 012	70 779	102 447	76 792	111 151
Antheuil-Portes	forage hors ZRE	414	599		0		0
Arsy	forage hors ZRE	769	1 079		0		0
Grandfresnoy/Sacy-le-Petit	forage hors ZRE	1 792	2 515		0		0
Le Plessier Saint Just	forage hors ZRE	528	598		0		0
Ravenel/Leglantiers	forage hors ZRE	1 622	1 836		0		0
Remy	forage hors ZRE	1 920	2 695		0		0
SE Avrechy	forage hors ZRE	1 311	1 484		0		0
SIAEP de l'Hardières (Cernoy/Fouilleuse/Maimbeville/Epineuse)	forage hors ZRE	441	573		0		0
SIVOM de Margny sur Matz	forage hors ZRE	433	627		0		0
TOTAL		54 944	68 067	2 606 522	3 212 752	2 915 979	3 584 058
part située hors ZRE		25 570	29 845	1 390 317	1 622 788	1 691 808	1 974 690
		47%	44%	53%	51%	58%	55%

Liste des tableaux et figures

Figure 1 : unités de distribution de la ZRE (source : SEPIA Conseils)
Figure 2 : linéaire de réseau, rendement, indice linéaire de perte et volumes consommés des unités de distribution de la ZRE (source : RAD 2021, SISPEA)
Figure 3 : évolution de la part des volumes prélevés dans la ZRE et exportés en dehors de la ZRE sur l'unité de distribution de l'ARC
Figure 4 : évolutions des volumes prélevés (en m3) pour l'AEP sur la ZRE entre 2000 et juillet 2022 (source : SMOA sur la base des données DDT, AESN et collectivités)
Figure 5 : évolution des volumes prélevés entre 2019 ou 2020 et 2050 par les unités de distribution desservie par un forage de la ZRE (source : SEPIA conseils)
Figure 6 : localisation des casiers de crues de l'Oise et de la ZRE (source : Entente Oise - Aisne et SEPIA Conseils)
Figure 7 : Estimation des évolutions des surfaces irriguées entre 2010 et 2020 (source : Chambre d'agriculture de l'Oise – projet O'Oise Aronde pour les données 2010 et OUGC pour les données 2020)
Figure 8 : besoins en eau, en 2050, pour les autres activités économiques et l'industrie possédant un forage dans la ZRE
Figure 9 : synthèse des besoins en 2050 par usage sur la ZRE et comparaison au VMPO (source : SEPIA Conseils)
Figure 10 : Schéma conceptuel de fonctionnement du modèle hydrologique (d'après BRGM) 21
Figure 11 : Comparaison du débit moyen mensuel modélisé au débit moyen mensuel mesuré à la station de Clairoix
Figure 12 : Comparaison des volumes totaux annuels de précipitations, d'écoulement de l'Aronde et de prélèvements pour la production d'eau potable, l'irrigation agricole et l'industrie et autres usages économiques
Figure 13 : Impacts relatifs des prélèvements sur le débit de l'Aronde
Figure 14 : Ecarts entre le débit moyen mensuel modélisé et le débit naturel reconstitué sans influence des prélèvements dans la nappe
Figure 15 : Déficits moyens induits par les prélèvements pour la production d'eau potable et l'irrigation 25
Figure 16 : Déficits moyens induits par les prélèvements pour la production d'eau potable et l'irrigation en pourcentage du DOE
Tableau 1 : liste des études réalisées par l'ARC pour rechercher de nouvelles ressources sur son territoire (Source : révision SDAEP et recherche 3ème ressource en eau, 2012 — Hydratec et Eau&Industrie) 10

