
GUIDE METHODOLOGIQUE

Document validé le 29 juin 2012

Juin 2012
PARTIE 1 - EXPLOITATION DES DONNEES EXISTANTES

1. Données utilisées pour la prélocalisation des zones humides

2. Données d’inventaires menés antérieurement ou parallèlement à l’étude

PARTIE 2 - METHODOLOGIE DE PRELOCALISATION DES ZONES HUMIDES

Méthodologie de prélocalisation

1. Détail de la méthode et résultats

1.1 Objectifs de la méthode de prélocalisation

1.2 Acquisition des données « facteurs »

1.2.1 La topographie

1.2.2 La géologie

1.2.3 La densité du réseau hydrographique

1.2.4 La pluviométrie

2. Croisement des données

3. Limites du modèle et retour d’expérience

PARTIE 3 - PROSPECTION DE TERRAIN

1. Méthodologie de terrain

2. Limites de la méthodologie de délimitation des zones humides sur le terrain

PARTIE 4 - METHODOLOGIE D’ATTRIBUTION DES CRITERES DES FICHES ZONES HUMIDES ET PLANS D’EAU

Fiche descriptive des zones humides

1. Renseignements généraux

1.1 Nom de la zone humide

1.2 Code de la zone humide

1.3 Localisation administrative

1.4 Coordonnées GPS

1.5 Code du bassin versant de surface

1.6 Code du bassin versant souterrain

1.7 Références bibliographiques

2. Description et fonctionnement de la zone humide

2.1 Description générale de la zone humide

2.2 Hydrologie et hydraulique

2.3 Patrimoine naturel

2.4 Activités et usages

2.4.1 Activité(s)
PARTIE 5 - METHODOLOGIE DE HIERARCHISATION DES ZONES HUMIDES 47

1. Présentation de la méthodologie de hiérarchisation 48
 1.1 Détermination des enjeux sur le territoire 49
 1.2 Détermination des fonctions des zones humides 50
 1.3 Hiérarchisation des zones humides 51

2. Critères de priorité 1 – Critères hydrauliques / Filtre n°1 53
 2.1 Détermination des enjeux sur le territoire 53
 2.1.1 Enjeu « alimentation en eau potable » 54
 2.1.2 Enjeu « qualité de l’eau » 56
 2.1.3 Enjeu « étage » 58
 2.1.4 Enjeu « inondation » 59
 2.2 Détermination des enjeux des zones humides 60
 2.3 Détermination des fonctions hydrauliques des zones humides 60
 2.4 Hiérarchisation des zones humides 63

3. Critères de priorité 2 – Critères biodiversité et usage récréatif / Filtre n°2 64
 3.1 Détermination des enjeux sur le territoire 64
 3.1.1 Enjeu « biodiversité » 64
 3.1.2 Enjeu « usages productifs et récréatifs (hors AEP) » 65
 3.2 Détermination des enjeux des zones humides 65
 3.3 Détermination des fonctions écologiques et récréatives des zones humides 66
 3.4 Hiérarchisation des zones humides 67
4. Critères de priorité 3 – Zones humides dégradées / Filtre n°3 67

PARTIE 6 - METHODOLOGIE DE DETERMINATION DES ZONES HUMIDES DISPARUES ... 68

1. Références de la donnée ... 69
2. Détermination des zones humides anciennes ... 69
3. Caractérisation des zones humides disparues ... 71

PARTIE 7 - ZONES HUMIDES FUTURES .. 72

1. Contexte hydrogéologique du territoire ... 73
2. Données disponibles
 2.1 Modélisation hydraulique (Antea, 2000) ... 75
 2.2 Modélisation hydraulique (Grundwasser und Geo-Forschung, 2010) 75
 2.3 Modélisation hydraulique (Antea, 2004-2005) 76
 2.4 Prise en compte des talwegs ... 77
3. Cartographie des zones humides futures .. 77

PARTIE 8 BASE DE DONNEES ET SIG .. 78

1. Base de données .. 79
2. Données cartographiques
 2.1 Phase de prélocalisation ... 79
 2.2 Phase de prospection de terrain ... 79
 2.3 Phase de hiérarchisation des zones humides 80
 2.4 Phase de détermination des zones humides disparues 80
 2.5 Phase de détermination des zones humides futures 80

PARTIE 9 CHRONOLOGIE DE L’ETUDE .. 81
Le rapport qui suit présente les méthodologies utilisées lors des différentes phases de l’étude d’inventaire des zones humides sur le périmètre du SAGE du Bassin Houiller et du SCOT du Val de Rosselle.

- Partie 1, présente l’ensemble des données utilisées pour la mise en œuvre de l’étude : les données nécessaires au travail cartographique de prélocalisation et les données concernant les zones humides inventoriées antérieurement à l’étude.
- Partie 2, concerne la méthodologie de prélocalisation des zones humides, déterminant les zones humides potentielles du territoire, indispensable pour le travail de terrain.
- Partie 3, précise la méthodologie de prospection du territoire pour effectuer l’inventaire des zones humides.
- Partie 4, précise la méthodologie utilisée pour renseigner l’ensemble des critères des fiches zones humides et plans d’eau.
- Partie 5, détermine la méthodologie de hiérarchisation des zones humides inventoriées.
- Partie 6, présente la méthodologie de détermination des zones humides disparues.
- Partie 7, présente la méthodologie de détermination des zones humides futures.
- Partie 8, présente l’ensemble des données cartographiques ainsi que l’organisation de la base de données.
PARTIE 1

EXPLOITATION DES DONNEES EXISTANTES
1. Données utilisées pour la prélocalisation des zones humides

Altitudes : Modèle Numérique de Terrain BD Topo (IGN), grille raster au pas de 25 m.
Réseau hydrographique : Tronçons hydrographiques de la BD Carthage, couche vectorielle de polylignes exploitable jusqu’au 1/25 000, et ponctuellement tronçons hydrographiques BDTopo, couche vectorielle de polylignes issue de la numérisation de la carte IGN 1/25 000.
Géologie : Géologie, couche vectorielle de polygones issue de la numérisation de la carte du BRGM au 1/50 000.
Pluviométrie : base AURELHY de Météo France, grille raster au pas de 1 km (normales climatiques sur une durée de 30 ans interpolée en une matrice continue).
Fond de plan : IGN Scan25, couche raster image de la carte IGN au 1/25 000, à la résolution de 2,5 m.

2. Données d’inventaires menés antérieurement ou parallèlement à l’étude

Zones humides d’après Corine Land Cover 2006, extraction des occupations du sol caractéristiques des milieux humides (marais intérieurs, plans d’eau).
Recensement des éléments surfaciques, de la BD Carthage, regroupant les zones couvertes d’eau douce permanente ou non permanente.
Zone humides d’après la carte IGN, inventaire de l’ensemble des pictogrammes « zone humide » présents sur le territoire d’étude.

L’ensemble des zones humides issues de ces inventaires a été pris en compte lors de la prospection terrain.
Zones humides préinventoriées
PARTIE 2

METHODOLOGIE DE PRELOCALISATION DES ZONES HUMIDES
Méthodologie de prélocalisation

1. Détail de la méthode et résultats

La méthode est basée principalement sur les travaux de Pierre-Olivier MAZAGOL, Jérôme PORTERET, Bernard ETLICHER du CRENAM (Université Jean Monnet de Saint-Étienne, CNRS – UMR EVS), Rémy MARTIN et Céline THYRIOT (ASCONIT Consultants) : Pré-détermination de zones humides sur le bassin Loire-Bretagne, 2008, et sur les algorithmes présentés dans la thèse de Jo WOOD (University of Leicester) : The geomorphological characterisation of Digital Elevation Models, 1996.

La prélocalisation des zones humides est réalisée par analyse spatiale sous SIG, essentiellement en mode raster maillé. Ce mode fait appel à l’utilisation de grilles de pixels, dont l’écartement constitue le pas de la grille, défini en unités terrain (25 m ou 1 km pour notre étude). Chaque pixel contient une valeur, quantitative continue ou discrète, ou qualitative.

Le passage du mode vecteur vers le mode raster se fait par rasterisation, la transition inverse se faisant par vectorisation. La rasterisation nécessite la définition d’un pas pour la grille en sortie, et le choix d’une méthode d’interpolation si l’objectif est de générer une grille de valeurs continues : altitudes, pluviométrie par exemple (couches de lignes et de points principalement).

Rasterisation d’une couche vectorielle de polygones

Les logiciels utilisés sont le module Spatial Analyst d’ArcGIS (éditeur ESRI), et le logiciel SIG libre Grass (téléchargeable en ligne) pour les calculs spécifiques de courbure et de forme du relief.

1.1 Objectifs de la méthode de prélocalisation

La méthode proposée vise à estimer la probabilité d’apparition de zones humides. Les facteurs climatiques, géologiques et topographiques, dans la mesure où ils déterminent le bilan de l’eau positif ou neutre indispensable au développement des zones humides, constituent les clefs de l’analyse. Elle repose sur l’idée que l’implantation de zones humides obéit partout à la combinaison d’un certain nombre de facteurs naturels liés à l’altitude, à la pente, au contexte climatique, à la disposition du lieu par rapport au réseau de drainage et à la nature géologique (formation superficielle et faciès des terrains sous-jacents) ainsi qu’à l’histoire géologique et géomorphologique. L’échelle d’analyse nous a conduit à identifier des paramètres simples, disponibles de manière homogène, sur l’ensemble du territoire.

En proposant une analyse critique des bases de données disponibles qu’il convient d’adapter à l’objectif poursuivi, des modèles de croisement de données adaptés au problème posé, il est possible de construire un modèle qui répartit le territoire entre des
secteurs où la probabilité de trouver des zones humides est faible car les facteurs sont globalement défavorables, et des secteurs où la probabilité est forte car les facteurs sont favorables, toutes les situations intermédiaires se trouvent également. La validité d’une telle démarche repose sur trois étapes qui nécessitent débat et qui constituent la limite d’un tel exercice (Etlicher et Bessaney, 1996) :

- la hiérarchisation des données en fonction de l’objectif recherché, autrement dit la pertinence des bases de données utilisées pour l’objectif recherché
- la construction du modèle de croisement de données qui doit permettre d’identifier les combinaisons de facteurs favorables et défavorables
- la hiérarchisation des résultats et la définition de classes de combinaisons (favorables ou défavorables).

Ces différentes étapes sont présentées successivement.

1.2 Acquisition des données « facteurs »

Les facteurs intégrés à la méthodologie sont de quatre ordres :

1.2.1 La topographie

Source : IGN, février 2009.

La topographie est un facteur essentiel du développement des zones humides. En massifs montagneux anciens, les hautes surfaces à la topographie tout en relief « mous » sont éminemment favorables au développement d’un drainage incertain. Dès que la pente devient suffisante, l’écoulement s’organise et un réseau de vallons secondaires se met en place. L’altitude est un facteur supplémentaire par le biais des caractères climatiques (élévation des précipitations avec l’altitude, réduction des températures estivales et donc de l’évaporation). À son tour, l’engorgement des sols peut conduire au développement de végétation hygrophile, voire turfigène, qui est un des moteurs du développement des zones humides en altitude. Dans les plaines, c’est au contraire la planéité à basse altitude qui sera le critère essentiel.

Afin d’extraire ces formes du terrain, nous avons utilisé les algorithmes présentés dans la thèse de Jo Wood et implémentés dans l’application Landserf 2.3 ainsi que dans le module « r.param.scale » du logiciel libre Grass 6.2.
Les six formes élémentaires de relief : de gauche à droite puis de bas en haut : Plan, Talweg, Crête, Col, Sommet, Dépression (d’après Wood)

Les calculs sont basés sur la dérivée seconde de la fonction d’altitude (ou dérivée de la pente), que l’on peut traduire de la façon suivante :

- une concavité est un point situé sur une ligne dont le point précédent est situé à une altitude plus élevée et à une pente plus importante et le point suivant est situé à une altitude plus faible avec une pente plus faible

- une convexité est un point situé sur une ligne dont le point précédent est situé à une altitude plus élevée et à une pente plus faible, et le point suivant est situé à une altitude plus faible avec une pente plus forte.

<table>
<thead>
<tr>
<th>Forme</th>
<th>Critère d’analyse de la dérivée</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommet</td>
<td>(\frac{\delta^2 z}{\delta x^2} > 0, \frac{\delta^2 z}{\delta y^2} > 0)</td>
<td>Point situé sur une convexité locale dans toutes les directions (points voisins tous à une altitude plus basse)</td>
</tr>
<tr>
<td>Crête</td>
<td>(\frac{\delta^2 z}{\delta x^2} > 0, \frac{\delta^2 z}{\delta y^2} = 0)</td>
<td>Point situé sur une convexité perpendiculaire à une ligne sans concavité ni convexité</td>
</tr>
<tr>
<td>Col</td>
<td>(\frac{\delta^2 z}{\delta x^2} > 0, \frac{\delta^2 z}{\delta y^2} < 0)</td>
<td>Point situé sur une convexité locale perpendiculaire à une concavité locale</td>
</tr>
<tr>
<td>Plan</td>
<td>(\frac{\delta^2 z}{\delta x^2} = 0, \frac{\delta^2 z}{\delta y^2} = 0)</td>
<td>Point qui n’est situé dans aucune concavité ni sur aucune convexité</td>
</tr>
</tbody>
</table>
L’extraction des formes du terrain se fait en trois étapes :

1. l’extraction automatique des **principaux éléments du relief**, principalement les crêtes, les talwegs et les zones planes (mais pas forcément horizontales), secondairement les cols, les sommets et les dépressions. L’extraction est effectuée sur des fenêtres de 9 pixels par 9. La détermination des zones planes est ici dépendante de valeurs de tolérance (pour la pente (s_tol) et la courbure (c_tol)) déterminées en entrée d’algorithme.

2. le calcul des **courbures verticales** (« profil curvature ») permettant l’obtention d’une estimation de la concavité / convexité des versants. Cette valeur de courbure rend compte, pour les valeurs positives, de l’accélération des flux vers l’aval, les processus gravitationnels étant maximisés, ou de leur décélération pour les valeurs négatives.

<table>
<thead>
<tr>
<th>Talweg</th>
<th>$\frac{\delta^2 z}{\delta x^2} < 0, \frac{\delta^2 z}{\delta y^2} = 0$</th>
<th>Point situé dans une concavité perpendiculaire à une ligne sans concavité ni convexité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dépression</td>
<td>$\frac{\delta^2 z}{\delta x^2} < 0, \frac{\delta^2 z}{\delta y^2} < 0$</td>
<td>Point situé dans une concavité locale dans toutes les directions (points voisins tous à une altitude plus élevée)</td>
</tr>
</tbody>
</table>

Tableau 1 : Calculs utilisés pour la définition des formes du relief en un point (d’après Wood)

Représentation des formes du relief sur fond IGN

ASCONIT Consultants – Juin 2012
Trois cas de figure pour la courbure verticale (d’après Florinsky)

3. La synthèse des deux couches précédentes, reclassées, en ne conservant que :
 - les zones de crêtes (et sommets)
 - les zones de talwegs (et dépressions)
 - les zones extraites comme « planes » (avec s_tol=4 et c_tol=0.0003) que nous remplaçons par les valeurs de courbures verticale (reclassées en valeurs négatives = zones concave, valeurs nulles ou très faibles = zones planes, et valeurs positives = zones convexes).
La grille de synthèse du relief obtenue comporte 3 classes en fonction du Potentiel Zone humide de chaque pixel :

- valeur 1 (Potentiel Zone humide faible) : Crête, Convexité
- valeur 2 (Potentiel Zone humide moyen) : Col, Plan
- valeur 3 (Potentiel Zone humide élevé) : Talweg, Concavité.

Il convient de rappeler que les zones classées comme planes peuvent avoir toute valeur de pente, elles ne sont pas toutes horizontales.

Le critère de pente permet de classer les formes du terrain favorables ou non à la présence de zones humides. En effet, la potentialité de présence de zones humides est très différente entre un talweg de vallée, dont la pente n’excède pas quelques degrés, et celle d’un talweg de torrent montagnard, dont la pente peut être très importante. Toutefois, il n’existe pas dans la littérature scientifique de seuils clairement établis pour discriminer les phénomènes d’accumulation ou de ralentissement de l’eau le long des versants. En effet, les phénomènes de circulation de l’eau dans le long des versants sont complexes et mettent en jeu non seulement les pentes, mais également les formations superficielles et la végétation de surface. Nous avons donc choisi des seuils de pentes « réalistes » (valeurs utilisées en plaine sur le bassin Loire-Bretagne par le CRÉNAM). S’ils sont forcément simplistes, ils permettent, dans le cadre de l’analyse, de traduire la très faible potentialité des secteurs à fortes pentes.
La grille des valeurs de pente (dérivées directement de celle des altitudes) est donc reclassée selon les seuils et valeurs suivants :
- valeur 1 (Potentiel Zone humide faible) : pente supérieure à 5° (8,8%)
- valeur 2 (Potentiel Zone humide moyen) : pente comprise entre 2 et 5°
- valeur 3 (Potentiel Zone humide élevé) : pente inférieure à 2° (3,5%).

Le croisement de la grille du relief et de celle de la pente reclassée permet d’obtenir une grille finale des **facteurs favorables liés à la topographie**, en 3 classes de valeur selon la même logique que précédemment, sur la base des critères suivants :
1.2.2 La géologie

La couche SIG mise à disposition est issue de la carte géologique au 1/50 000ème. Dans les terrains sédimentaires, l’identification des faciès favorables est relativement aisée. Chaque polygone s’est donc vu attribué un code en fonction de son comportement face à l’écoulement des eaux, d’après l’analyse de la notice de la carte géologique. Les faciès ont d’abord été regroupés en 3 sous-classes de perméabilité :

- La valeur 1 regroupe les ensembles perméables : calcaires bioclastiques, calcaires argileux, conglomérats polygéniques, dolomie, dolomie gréseuse,
- La valeur 2 regroupe les ensembles moyennement imperméables : alluvions, grès, grès grossier, déchets d’industries extractives,
- La valeur 3 regroupe les roches très imperméables : argiles, marnes, tourbe, grès micacé, limons.

Afin de ne pas discriminer les faciès perméables, des traitements différents seront appliqués pour les éléments de valeur 1 (géologie perméable) et pour les éléments de valeur 2 et 3 (géologie imperméable).

Des biais existent au sein de ce classement : le recouvrement formation superficielle/roche en place qui peut être de comportement très différent. On a par ailleurs privilégié la formation superficielle, mais celle-ci peut être discontinue et repose sur plusieurs faciès différents.
1.2.3 La densité du réseau hydrographique

La présence du réseau hydrographique constitue à la fois un indice du degré de perméabilité locale du substrat géologique, et un facteur favorable à la présence de zones humides par l’alimentation potentielle des nappes d’eau souterraines libres situées à proximité des cours d’eau, soit directement ou indirectement des zones humides présentes à proximité (à certaines périodes de l’année, généralement en hautes voire moyennes eaux).

Une grille au pas de 25 m est générée à partir de la couche vectorielle du réseau hydrographique (entités linéaires Tronçons hydrographiques de la BDTopo de l’IGN), contenant pour chaque cellule un indice de densité hydrographique calculé en fonction de la proximité d’un cours d’eau en utilisant l’algorithme « Densité de lignes » d’ArcGis 9.2.

Principe de fonctionnement de l’algorithme "densité de lignes"

Ce dernier calcule la longueur totale d’éléments linéaires (dans notre cas les cours d’eau) par unité de surface (notre choix étant le km2) au sein d’un cercle d’un rayon défini (dans notre cas 100m). La valeur obtenue est alors attribuée au pixel central du cercle. Les valeurs ainsi obtenues sont ensuite reclassées en 3 classes d’intervalles déterminés par la méthode des seuils naturels de Jenks (méthode intégrée au logiciel ArcGIS 9.2) :
- valeur 1 (Potentiel Zone humide faible) : densité de ligne inférieure à 3,
- valeur 2 (Potentiel Zone humide moyen) : densité de ligne comprise entre 3 et 8,
- valeur 3 (Potentiel Zone humide élevé) : densité de ligne supérieure à 8.
1.2.4 La pluviométrie

Source : MétéoFrance, normale climatique de la période 1971-2000 issue de la base AURELHY

La pluviométrie peut conditionner la présence de zones humides en tant que facteur d’alimentation en eau. Les secteurs de pluviométrie élevée leur sont ainsi potentiellement plus favorables que les secteurs de pluviométrie faible.

La grille utilisée est la base de données AURELHY de Météo France, au pas de 1 km. Cette donnée constitue une interpolation des valeurs de normales climatiques issues des stations météorologiques ; l’interpolation intègre notamment les variations d’altitude, facteur conditionnant également la pluviométrie.

Les valeurs obtenues sont reclassées en 3 classes d’intervalle égaux :
- valeur 1 (Potentiel Zone humide faible) : pluviométrie de 800,30 à 839,73 mm/an,
- valeur 2 (Potentiel Zone humide moyen) : pluviométrie de 839,73 à 878,15 mm/an,
- valeur 3 (Potentiel Zone humide élevé) : pluviométrie de à 879,15 à 918,57 mm/an.
2. Croisement des données

Les quatre facteurs sélectionnés sont ensuite combinés. Les secteurs sur substrat géologique imperméable ont fait l’objet d’une analyse séparée, en « rehaussant la sensibilité » du modèle (par l’intégration des valeurs de pente au calcul de la topographie). L’objectif était de ne pas discriminer les zones à géologie perméable au profit des zones à géologie imperméable. La combinaison des données est effectuée par le biais de la « calculatrice raster » du module Spatial Analyst d’ArcGIS. Il s’agit de calculer la somme des valeurs affectées aux pixels dans les différentes grilles en appliquant à chacune un coefficient proposé selon les tables ci-dessous :

Croisement des données :

<table>
<thead>
<tr>
<th>Facteur</th>
<th>Classe rappel de la correspondance</th>
<th>Coefficient de pondération</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topographie</td>
<td>1 Crêtes/convexités OU pentes significatives (> 5°)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2 Talwegs/concavités ET pentes assez faibles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Talwegs/concavités ET pentes très faibles (<2°)</td>
<td></td>
</tr>
<tr>
<td>Géologie</td>
<td>1 Roches perméables</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2 Roches moyennement imperméables</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Roches très imperméables</td>
<td></td>
</tr>
<tr>
<td>Densité du réseau hydrographique</td>
<td>1 Absence de cours d’eau à proximité (<3 m/km²)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2 Proximité d’un cours d’eau (3 à 8 m/km²)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Proximité de plusieurs cours d’eau (>8 m/km²)</td>
<td></td>
</tr>
<tr>
<td>Pluviométrie</td>
<td>1 Zone de moindres précipitations (<840 mm)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 Zone de précipitations intermédiaires</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Zone de précipitations plus fortes (>880 mm)</td>
<td></td>
</tr>
</tbody>
</table>

Table des pondérations

Le calcul « 4*Topographie + 3*Géologie + 2*Densité du réseau hydrographique + 1*Pluviométrie » donne des valeurs comprises entre 10 et 30. Elles sont ainsi réparties de la manière suivante :

<table>
<thead>
<tr>
<th>Valeurs</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 15</td>
<td>potentiel ZH très faible</td>
</tr>
<tr>
<td>15 - 20</td>
<td>potentiel ZH faible</td>
</tr>
<tr>
<td>20 - 25</td>
<td>potentiel ZH moyen</td>
</tr>
<tr>
<td>25 - 30</td>
<td>potentiel ZH fort</td>
</tr>
</tbody>
</table>
Zones humides potentielles
3. Limites du modèle et retour d’expérience

L’inventaire terrain réalisé sur le Bassin Houiller s’est basé sur une méthode de prélocalisation des zones humides issue de la combinaison de quatre facteurs déterminants (topographie, géologie, densité du réseau hydrographique, pluviométrie).
Bien que la quasi-totalité du secteur d’étude fût prospectée (exceptées les zones industrielles ou autres secteurs inaccessibles), la méthode de prélocalisation permettait de se focaliser davantage sur les zones déterminées en potentiel moyen et fort.
Le but d’une telle approche est d’évaluer l’efficacité de la méthode, d’en dégager les limites et si possible d’y apporter des améliorations.
Le tableau qui suit présente les pourcentages de surface humide répertoriés sur chaque potentiel (très faible, faible, moyen, fort).

<table>
<thead>
<tr>
<th>Potentiel</th>
<th>Pourcentage (en surface humide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentiel fort</td>
<td>8</td>
</tr>
<tr>
<td>Potentiel moyen</td>
<td>47</td>
</tr>
<tr>
<td>Potentiel faible</td>
<td>34</td>
</tr>
<tr>
<td>Potentiel très faible</td>
<td>11</td>
</tr>
</tbody>
</table>

La majorité de la surface humide se situe dans le potentiel moyen, puis dans le potentiel faible.

A noter que le travail a également été effectué en terme de nombre de zones humides présentant au moins un pixel en potentiel fort ou moyen. La totalité des zones humides se trouve dans ce cas de figure.

Un travail sur les pondérations utilisées lors de la méthodologie de prélocalisation permettrait d’améliorer l’efficacité du modèle.
PARTIE 3

PROSPECTION DE TERRAIN
1. Méthodologie de terrain

Le terrain s’est effectué à l’aide d’un atlas cartographique sur fond IGN-Scan 25 et orthophotographie permettant la prospection de l’ensemble du terrain.

Une attention particulière a été portée aux zones ayant un potentiel humide moyen à fort (cf. Partie 2 – Prélocalisation) mais l’ensemble du territoire fut parcouru (potentiels faible et très faible inclus).

Les zones humides ont été délimitées directement sur le terrain. Le critère principal pour déterminer qu’un milieu est humide est la présence d’une végétation hygrophile, caractéristique des zones gorgées d’eau.

Si un secteur est déterminé comme potentiellement humide (cf. Partie 2 – Prélocalisation) mais que la végétation n’est pas hygrophile, un sondage pédologique est effectué sur une profondeur de 1,20 m dans le but de localiser des horizons hydromorphes. Ces sondages ont été effectués à raison de maximum un sondage pédologique tous les 5 hectares. Si le sondage pédologique présente des indices d’hydromorphie du sol, la zone est considérée comme humide. Afin d’être le plus exhaustif possible, le contour des zones humides reprend parfois les contours des zones humides potentielles fortes ou moyennes (c’est le cas notamment des zones forestières difficilement accessibles), des zones humides anciennes (issues des cartes d’Etat-Major) et des zones humides déjà existantes. Ces zones humides sont numérisées sous Système d’Information Géographique ArcGIS (système de projection : Lambert 93).

A la fois les zones humides (pas d’étendue d’eau visible) et les plans d’eau ont été inventoriés.

Les prospections ont eu lieu de mai à septembre 2011. Deux personnes ont prospectées l’ensemble du territoire, pour un total de 30 jours de prospection.
Seule la commune de Saint-Avold n’a pas été prospectée. Les résultats de l’inventaire des zones humides effectué sur cette commune par le bureau d’étude Ecolor ont été intégrés après la phase de terrain.

La prospection de terrain a permis de remplir des fiches descriptives par zone humide et plan d’eau. Ces fiches regroupent les informations exigées par le Tronc Commun National ainsi que des informations complémentaires (continuité écologique, présence de zone humide préinventoriée…).

Nb : Les zones humides prospectées dans le cadre de l’étude sont celles définies par l’article L211-1 du Code de l’Environnement : terrains, exploités ou non, pouvant être inondés ou gorgés d’eau douce de façon permanente ou temporaire ; la végétation, quand elle existe, y est dominée par des plantes hygrophiles pendant au moins une partie de l’année.

2. Limites de la méthodologie de délimitation des zones humides sur le terrain

La méthodologie mise en œuvre a permis d’inventorier des milieux dont le caractère humide est incontestable au vu :

- des habitats naturels en place (analyse visuelle des cortèges végétaux présents)
- ou de l’hydromorphie du sol (analyse d’un sondage pédologique fait à la tarière).

Lorsque les limites des habitats étaient difficiles à définir (prairie fauchée, verger, zone de vaste étendue rendant complexe le repérage exhaustif,...), a fortiori lorsque seul le sondage pédologique permettait l’identification d’une zone humide, ont également été intégrées au contour :

- les zones qui avaient été identifiées à « fort potentiel humide » par la prélocalisation SIG
- les zones humides anciennes issues de l’analyse des cartes d’Etat-Major
- les zones humides inventoriées préalablement à l’étude.

La limite qui en résulte correspond alors à une extension jugée maximum de la zone humide.

Une rubrique nommée « Précision de la délimitation » a été incluse dans les fiches descriptives. Elle établit que si une zone humide a bien été identifiée de façon incontestable à l’endroit considéré, la limite présentée peut se révéler imprécise :

- Précision « Forte » : la zone humide a été délimitée de manière très précise au vu des éléments de terrain stricts
- Précision « Moyenne » : la délimitation prend en compte les éléments de prélocalisation
- Précision « Faible » : la délimitation prend également en compte les terrains humides anciens.

- cartographie précise de l’ensemble des habitats naturels du site
- réalisation de transects botaniques (analyse espèce par espèce de plantes hygrophiles) perpendiculaires à la limite supposée de la zone humide, à intervalles réguliers de quelques mètres à quelques dizaines de mètres.
- réalisation de transects pédologiques perpendiculaires à la limite supposée de la zone humide, à intervalles réguliers de quelques mètres à quelques dizaines de mètres.

La délimitation réglementaire permet de délimiter juridiquement les zones humides. Elle concerne des zones humides où des aménagements sont envisagés (tels que le drainage, le remblai, l’assèchement et la mise en eau). A partir d’une certaine superficie, ces aménagements nécessitent une autorisation ou une déclaration de la police de l’eau. Les zones humides définies dans cette étude n’ont pas été délimitées réglementairement. Dans le cadre des projets d’aménagement, il sera peut-être nécessaire de délimiter réglementairement la zone humide concernée par le projet.
PARTIE 4

METHODOLOGIE D’ATTRIBUTION DES CRITERES DES FICHES ZONES HUMIDES ET PLANS D’EAU
Fiche descriptive des zones humides

ZH_025
Zone humide déterminée d’après la végétation
Précision de la délimitation : Faible
Présence d’habitats déterminants pour partie une zone humide

Renseignements généraux
Code de la zone humide : US7Ascon0025
Localisation administrative : GUENVILLER MACHEREN
Coordonnées GPS du centroid : X : 68012174834 Y : 49.09530094275
Code du bassin versant de surface : A980 La Nied Allemande de sa source au Weihergraben (inclus).
Code du bassin versant souterrain : 507a Grès à noix/cornes du Keuper de Lorraine Nord
Références bibliographiques : AERM, BRGM, DRCAL Lorraine, Conseil Régional de Lorraine, Conseil Général de Moselle, Conservatoire des Sites Lorrains

Date de prospection : 25/07/2011

Prioritaire pour la gestion de l’eau et la biodiversité
Description et fonctionnement de la zone humide

Description générale de la zone humide
- Altitude : 291 m
- Superficie : 613330 m²
- Longueur : 717 m
- Typologie(s) SDAGE : Bords de cours d'eau et plaine alluviale
- Typologie SAGE : Forêt inondable
- Typologie(s) CORINE Biotope :
 - 37.1 COMMUNAUTÉS À REINE DES PRES ET COMMUNAUTÉS ASSOCIÉES
 - 41.37 Fénologies sub-atlantiques [*]
 - 44.12 Saussaies de plaine, collinéraies et méditerranéo-montagnardes

Hydrologie et hydrogéologie
- Régime de submersion : Exceptionnellement submergé, Partiellement submergé
- Entrée d'eau : cours d'eau permanent
- Sortie d'eau : cours d'eau permanent
- Type de connexion : la zone humide est traversée par un flux continu d'eau superficielle
- Connectée au cours d'eau : La Nied allemande
- Fonction(s) hydrologique et hydrogéologique :
 - Fonction d'épuration
 - Expansion naturelle des crues
 - Ratéllissement du ruissellement
 - Soutien naturel d'étage
 - Atténuation et désynchronisation des pics de crue à l'aval
 - Sédimentation des matières en suspension
 - Rôle naturel de protection contre l'érosion

Patrimoine naturel
- Inventaire(s) :
- Pas d'inventaire patrimonial
- Habitat (Directive Habitat) :
- Métagorphiques mésothaps mésothaps collinéraies
- Présence d'habitats déterminants des NIEFF : Oui - Note 3
- Appréciation de la continuité écologique :
- Bonne continuité écologique, les milieux sont liés
- Fonction(s) biologique(s) :
 - Habitat pour les populations animales et végétales
 - Zone particulière d'alimentation et de reproduction des espèces
 - Connexions biologiques

Activités et usages
- Activité(s) : sylviculture
- Valeur(s) socio-économique(s) :
 - production agricole et sylvicole (pâturage, fauche, roseaux, sylviculture)
- Facteur(s) d'influence : PRATIQUES ET TRAVAUX FORESTIERS

Contexte institutionnel, réglementaire, contractuel
- Mesures de protection des espaces :
- Pas de mesure de protection des espaces
- Mesures de protection des milieux aquatiques :
- Plan de prévention du risque inondation
- Instruments contractuels et financiers :
- Pas d'instrument contractuel et financier

Evaluation
- Fonctions et valeurs majeures :
 - Alimentation de la faune. Diversité des habitats.
 - Diagnostic fonctionnel hydynamique :
 - Fonctionnement observé "sensiblement dégradé ne remettant pas en cause les équilibres naturels"
- Menaces potentielles ou avérées : Sylviculture.

Orientation d'action
- Pratiquer une gestion sylvicole extensive.
1. Renseignements généraux

La première page présente une voire deux photos de la zone humide inventoriée. Un extrait cartographique présente également la localisation de la zone sur un fond IGN-Scan 25. La majorité des exports est effectuée à l’échelle 1/25000 mais les zones humides de taille importante sont présentées à une échelle inférieure. En cas d’absence de photographie, un export sur fond de photographie aérienne est présenté.

Sont présentées également les correspondances avec la planche atlas et la (les) fiche(s) plan d’eau si la zone humide est connectée à une étendue d’eau permanente.
La mention « zone humide déterminée d’après » permet d'identifier si la zone humide a été identifiée au moyen de la végétation qu'elle présente ou si un sondage pédologique a été nécessaire pour confirmer le caractère humide de la zone.
La mention « Précision de la délimitation » permet d’identifier si la zone humide a été délimitée de manière très précise au vu des éléments de terrain stricts (précision forte), si la délimitation prend en compte les éléments de prélocalisation (précision moyenne) ou si elle prend également en compte les terrains humides anciens (précision faible).
Une mention « Présence d’habitats déterminant pour partie une zone humide » est notée quand les habitats caractérisent la zone comme pour partie humide. Les habitats concernés sont marqués d’une étoile dans la liste des habitats Corine Biotope (*).

1.1 Nom de la zone humide

Les zones humides sont nommées de la manière suivante : ZH.xxx.

1.2 Code de la zone humide

Le code de la zone humide est un identifiant unique requis par le Tronc Commun National. Il permet la liaison de toutes les tables contenant les informations saisies pour une zone humide.
Le code à 13 caractères est composé comme suit :
- Département : les 3 premiers caractères correspondent au numéro de département dans lequel se trouve majoritairement la zone humide
- Maître d’œuvre : les 6 caractères suivants représentent le prestataire qui réalise l’inventaire
- N° d’ordre : les 4 derniers caractères forment le numéro d’ordre de saisie de la fiche

Exemple : 057Asconi0001

1.3 Localisation administrative

La localisation administrative a été déterminée par croisement de la couche cartographique des communes de France avec la couche cartographique des zones humides répertoriées. Si une zone humide est présente sur plusieurs communes, la totalité des communes concernées a été renseignée.

1.4 Coordonnées GPS

Les coordonnées GPS du centroïde de chaque zone humide ont été déterminées sous Système d’Information Géographique (ArcGIS 9.3).
Les valeurs en X et Y sont exprimées en degrés décimaux.
1.5 Code du bassin versant de surface

Le bassin versant de surface a été déterminé par croisement de la couche des bassins versants du bassin Rhin-Meuse avec la couche cartographique des zones humides répertoriées.

1.6 Code du bassin versant souterrain

Le bassin versant souterrain a été déterminé par croisement de la couche des bassins versants du bassin Rhin-Meuse avec la couche cartographique des zones humides répertoriées.

1.7 Références bibliographiques

Les références bibliographiques sont les mêmes pour l’ensemble des zones humides inventoriées :
- Agence de l’Eau Rhin-Meuse (AERM)
- Bureau de Recherches Géologiques et Minières (BRGM)
- Direction Régionale de l’Environnement, de l’Aménagement et du Logement (DREAL) Lorraine
- Conseil Régional de Lorraine
- Conseil Général de Moselle
- Conservatoire des Sites Lorrains

2. Description et fonctionnement de la zone humide

2.1. Description générale de la zone humide

2.1.1. Description générale et paysagère

Il s’agit d’un commentaire d’expert portant sur la description générale de la zone humide. Si une zone humide est issue de l’inventaire du bureau d’études Ecolor (mandaté pour l’inventaire des zones humides sur la commune de Saint-Avold), la mention : « Zone humide déterminée par Ecolor » est présente dans la description de la zone humide.

2.1.2. Altitude, superficie et longueur

L’altitude (en mètres), la superficie (en mètres carrés) et la longueur (en mètres) de chaque zone humide ont été déterminées sous Systèmes d’Information Géographique (ArcGIS 9.3).

A noter que certaines zones humides sont directement liées à des plans d’eau. La valeur de surface donnée est la valeur réelle de la zone humide (la surface du plan d’eau est exclue).
2.1.3. Typologie SDAGE

La typologie SDAGE permet d’indiquer à quelle(s) formation(s) hydrogéomorphologique(s) se rattache la zone humide.

<table>
<thead>
<tr>
<th>Nomencature de la typologie SDAGE</th>
<th>Critère(s) d’attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grands estuaires</td>
<td>Sans objet</td>
</tr>
<tr>
<td>2. Baies et estuaires moyens et plats</td>
<td>Sans objet</td>
</tr>
<tr>
<td>3. Marais et lagunes côtiers</td>
<td>Sans objet</td>
</tr>
<tr>
<td>4. Marais saumâtres aménagés</td>
<td>Sans objet</td>
</tr>
<tr>
<td>5-6. Bordures de cours d’eau et plaines alluviales</td>
<td>Zone humide traversée par un cours d’eau ou un fossé ou zone humide à moins de 50m d’un cours d’eau ou fossé (avec évaluation au cas par cas selon le type de cours d’eau)</td>
</tr>
<tr>
<td>7. Zones humides de bas-fonds en tête de bassin</td>
<td>Zone humide en tête de bassin</td>
</tr>
<tr>
<td>8. Régions d’étangs</td>
<td>Nombreux étangs à proximité de la zone humide</td>
</tr>
<tr>
<td>9. Bordures de plans d’eau</td>
<td>Zone humide en contact direct avec un plan d’eau</td>
</tr>
<tr>
<td>10. Marais et landes humides de plaines et plateaux</td>
<td>Zone humide dans dépression de plaines et plateaux, zones forestières, zone déconnectée des cours d’eau</td>
</tr>
<tr>
<td>11. Zones humides ponctuelles</td>
<td>Zone humide isolée, déconnectée des cours d’eau, probablement connectée à la nappe</td>
</tr>
<tr>
<td>12. Marais aménagés dans un but agricole</td>
<td>Zone humide aménagée pour la culture ou l’élevage</td>
</tr>
<tr>
<td>13. Zones humides artificielles</td>
<td>Bassin de rétention colonisé par la végétation hygrophile</td>
</tr>
</tbody>
</table>
2.1.4. Typologie SAGE

Il s’agit de correspondances indicatives avec la typologie SDAGE, établies à partir du critère habitat et non d’une typologie intégrant les fonctions écologiques et services rendus par les zones humides.

<table>
<thead>
<tr>
<th>Nature</th>
<th>N°</th>
<th>Type SDAGE</th>
<th>Type SAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaux courantes</td>
<td>5 et 6</td>
<td>Bordures de cours d'eau</td>
<td>Ripisylve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plaines alluviales</td>
<td>Forêt alluviale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prairie inondable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Roselière, Caraïaie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Végétation aquatique</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Zones humides de bas fonds en tête de bassin</td>
<td>Marais d'altitude</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Région d'étangs</td>
<td>Forêt inondable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prairie inondable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Roselière, Caraïaie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Végétation aquatique</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Bordures de plans d'eau</td>
<td>Forêt inondable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prairie inondable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Roselière, Caraïaie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Végétation aquatique</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Marais et landes humides de plaine et de plateaux</td>
<td>Lande humide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prairie tourbeuse</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Zones humides ponctuelles</td>
<td>Petits lac</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mare</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tourbière</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pré-salé continental</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Marais aménagés dans un but agricole</td>
<td>Rizière</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prairies amendée</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peuplera</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Zones humides artificielles</td>
<td>Réservoir, barrage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carrière en eau</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lagunage</td>
</tr>
</tbody>
</table>

Une forêt humide en bordure de cours d’eau a été déterminée comme forêt alluviale. Une forêt humide non connectée à un cours d’eau a été définie comme forêt inondable (par ruissellement ou remontée de la nappe).

Une prairie humide connectée à un cours d’eau a été déterminée comme prairie inondable. Toute prairie humide non connectée à un cours d’eau a été déterminée comme prairie amendée.

2.1.5. Typologie Corine Biotope

La typologie Corine Biotope permet de décrire les types d’habitats présents dans la zone humide, d’après un référentiel européen de description hiérarchisée des milieux.

La typologie Corine Biotope présente plusieurs niveaux emboités, du plus grossier (niveau 1) au plus fin. Lors de l’inventaire et selon le cahier des charges, les habitats ont été déterminés aux niveaux 2 ou 3. Quand des habitats de rang supérieur (4, voire 5) étaient facilement détectables, ceux-ci ont été précisés.

Dans le cas de zones déterminées d’après la pédologie les habitats Corine Biotope, humides ou non, ont été précisés.

D’après l’arrêté du 24/06/08 modifié par arrêté du 1er octobre 2009 précisant les critères de définition et de délimitation des zones humides en application des articles L.214-7-1 et R211-108 du code de l’environnement, certains habitats déterminent « pour partie » une zone humide. Ces habitats sont précisés dans la fiche descriptive au moyen d’une étoile (*).
2.2. Hydrologie et hydraulique

2.2.1. Régime de submersion

La submersion est la présence d’eau en surface de la zone humide, quelle que soit la hauteur d’eau.

Le régime de submersion a été apprécié de la manière suivante :

<table>
<thead>
<tr>
<th>Fréquence de submersion</th>
<th>Critère(s) d’attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jamais submergé</td>
<td>Zone humide éloignée des flux d’eau superficielle, en dehors d’une zone de dépression (zone humide à plus de 50m d’un cours d’eau)</td>
</tr>
<tr>
<td>Toujours submergé</td>
<td>Attribué lorsqu’il s’agit de roselières denses dont une mince hauteur d’eau est visible en permanence.</td>
</tr>
<tr>
<td>Exceptionnellement submergé</td>
<td>Zone humide dans dépression ou à proximité de fossés ou cours d’eau (zone humide à moins de 50m d’un cours d’eau).</td>
</tr>
<tr>
<td>Régulièrement submergé</td>
<td>Zone humide à proximité de systèmes alluviaux</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Étendue de submersion</th>
<th>Critère(s) d’attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partiellement submergé</td>
<td>Zone humide séparée du cours d’eau par d’autres milieux ou dont l’étendue se prolonge en dehors de la zone de dépression</td>
</tr>
<tr>
<td>Totalement submergée</td>
<td>Zone humide uniquement dans dépression, ou adjacente à un cours d’eau</td>
</tr>
</tbody>
</table>

2.2.2. Entrée / sortie d’eau

Cette rubrique renseigne sur les échanges entre la zone humide et les milieux avoisinants. Il s’agit de déterminer la nature des eaux entrant et l’exutoire des eaux sortant de chaque zone humide.

Valeurs possibles :

<table>
<thead>
<tr>
<th>Inconnu</th>
<th>Plans d’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d’eau permanent</td>
<td>Ruissellement diffus</td>
</tr>
<tr>
<td>Cours d’eau temporaire</td>
<td>Eaux de crues</td>
</tr>
<tr>
<td>Sources</td>
<td>Pompe</td>
</tr>
<tr>
<td>Nappes</td>
<td>Précipitations</td>
</tr>
</tbody>
</table>

La valeur « source » a été notée quand la zone humide comporte le figuré « source » sur l’IGN-Scan 25.
La valeur « nappe » a été notée quand la zone humide n’est pas connectée à un cours d’eau et qu’elle ne comporte pas le figuré « source » sur l’IGN-Scan 25.

Plusieurs cas de figure ont été répertoriés :
- une zone humide en bordure de cours d’eau se verra attribuer l’entrée « cours d’eau permanent » et la sortie « cours d’eau permanent ».
- une zone humide en bordure de plan et de cours d’eau aura pour entrées et sorties « cours d’eau permanent » et « plan d’eau ».
- une zone humide en bordure de cours d’eau dont le cours d’eau est en pointillé sur l’IGN-Scan25 aura pour entrée et sortie « cours d’eau temporaire ».
- une zone humide en bordure d’un plan d’eau non connecté à un cours d’eau (donc alimenté par une nappe) aura pour entrées « plan d’eau » et « source » et pour sorties « plan d’eau » et « nappe ».
- une zone humide ponctuelle, rattachée à une nappe, aura pour entrées « nappe », « précipitation » et « ruissellement » et pour sorties « nappe » et « ruissellement ».
- une zone humide ponctuelle, rattachée à une nappe, dans un contexte forestier aura pour entrées et pour sorties « ruissellement » et « nappe ».
- une zone humide à la source d’un cours d’eau (présence du figuré « source » sur l’IGN-Scan 25 au sein de la zone humide) présentera l’entrée « source » et la sortie « cours d’eau ».

2.2.3. Type de connexion

Ce critère permet de renseigner de quelle manière la zone humide est raccordée à un flux d’eau superficielle.

Les valeurs suivantes ont été attribuées :

<table>
<thead>
<tr>
<th>Type de connexion</th>
<th>Critère(s) d’attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>La zone humide est traversée par un flux continu d’eau superficielle</td>
<td>Un cours d’eau ou un fossé traverse tout ou partie de la zone humide.</td>
</tr>
<tr>
<td>La zone humide présente une entrée, une dispersion de l’eau dans la zone, puis une sortie d’eau</td>
<td>Une zone humide est située à moins de 50 m d’un cours d’eau (avec évaluation au cas par cas selon le type le cours d’eau). Une zone humide est alimentée par les précipitations et rejette ses eaux dans un cours d’eau.</td>
</tr>
<tr>
<td>La zone humide n’est pas connectée à un flux d’eau superficielle</td>
<td>La zone humide ne se situe pas à proximité d’un cours d’eau, elle est donc probablement connectée au réseau souterrain.</td>
</tr>
</tbody>
</table>

Les schémas ci-dessous permettent de comprendre dans quelles conditions chaque valeur fut attribuée sur le terrain.

Schémas de connexion

![Diagramme de connexion](image)

De plus, si une zone humide est située à moins de 50 mètres d’un cours d’eau, alors elle est considérée comme connectée au cours d’eau et la mention : « Connexion au cours d’eau : ... » est ainsi présente sur la fiche zone humide.

Les zones humides non connectées à un cours d’eau (à une distance supérieure à 50 mètres) ont quant à elles la mention « Connexion possible à la nappe : ... », information obtenue par croisement sous Système d’Information Géographique de la couche des zones humides inventoriées avec la couche des bassins versants souterrains.

NB : La valeur de 50m a été déterminée comme valeur limite jusqu’à laquelle on estime qu’il y a connexion hydraulique « permanente » entre deux zones humides ou entre une zone humide et un cours d’eau (sur le territoire étudié).
2.2.4. Fonction(s) hydraulique et hydrologique

La fonctionnalité hydrologique fait partie des informations déterminantes de l’inventaire des zones humides. Les zones humides jouent un rôle fonctionnel important vis-à-vis des ressources en eau et en particulier en ce qui concerne l’équilibre écologique lié à la régulation du cycle de l’eau. Le Tronc Commun National permet de renseigner les valeurs suivantes, par ordre d’importance décroissant :

<table>
<thead>
<tr>
<th>Fonction hydrologique d’après le TCN</th>
<th>Critère(s) d’attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion naturelle des crues</td>
<td>Zone humide connectée à un cours d’eau</td>
</tr>
<tr>
<td>Ralentissement du ruissellement</td>
<td>Zone humide connectée à un cours d’eau</td>
</tr>
<tr>
<td>Soutien naturel d’étiage</td>
<td>Zone humide connectée à un cours d’eau</td>
</tr>
<tr>
<td>Fonction d’épuration</td>
<td>Toute zone humide</td>
</tr>
<tr>
<td>Rôle naturel de protection contre l’érosion</td>
<td>Zone humide avec couvert végétal important (présence d’une strate arborée, code Corine Biotope 4 et niveaux 2 à 5 associés)</td>
</tr>
</tbody>
</table>

Des valeurs supplémentaires ont été ajoutées dans le cadre de l’étude, afin de préciser les fonctionnalités hydrauliques et hydrologiques des zones humides.

<table>
<thead>
<tr>
<th>Fonctionnalités hydrauliques et hydrologiques supplémentaires</th>
<th>Critère(s) d’attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atténuation et désynchronisation des pics de crue à l’aval</td>
<td>Zone humide connectée à un cours d’eau</td>
</tr>
<tr>
<td>Recharge des nappes</td>
<td>Zone humide connectée exclusivement à une nappe</td>
</tr>
<tr>
<td>Sédimentation des matières en suspension</td>
<td>Zone humide connectée à un cours d’eau</td>
</tr>
</tbody>
</table>

2.3. Patrimoine naturel

2.3.1. Inventaires

Il s’agit d’inventaires présentant des informations sur la faune, la flore ou les habitats. La présence d’inventaire a été déterminée par croisement de couches géographiques.

Inventaires possibles :

<table>
<thead>
<tr>
<th>Zone Naturelle d’Intérêt Ecologique, Faunistique et Floristique de 1ère génération (ZNIEFF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espaces Naturels Sensibles (ENS)</td>
</tr>
<tr>
<td>Proposition de Site d’Intérêt Communautaire (pSIC)</td>
</tr>
<tr>
<td>Zone Spéciale de Conservation (ZSC)</td>
</tr>
</tbody>
</table>

Les sigles, codes et intitulés des inventaires sont notés sur la fiche zone humide.
2.3.2. Habitat (Directive Habitat)

Les habitats issus de la Directive « Habitat Faune Flore » sont des habitats remarquables apportant de la valeur à la zone humide. Ces derniers ont été déterminés à partir d’un tableau de correspondance « Habitat Corine Biotope → Habitat de la Directive ».

2.3.3. Présence d’habitats déterminants des Zones Naturelles d’Intérêt Écologique, Faunistique et Floristique

Ce critère détermine si des habitats déterminants des ZNIEFF sont présents au sein de la zone humide. Cette donnée est issue du tableau des habitats de Lorraine, établi par la DREAL Lorraine. A chaque habitat du référentiel Corine Biotope présent en Lorraine est attribuée une note ZNIEFF de 1 à 3. Un habitat de note 1 suffit à déterminer une ZNIEFF. Par contre pour qu’un habitat noté 2 ou 3 soit classé en ZNIEFF, des données "espèces déterminantes ZNIEFF" complémentaires devront être établies jusqu’à obtention d’un nombre de données suffisant pour établir une ZNIEFF. Ce critère permet d’évaluer l’intérêt écologique de la zone humide.

2.3.4. Appréciation de la continuité écologique

<table>
<thead>
<tr>
<th>Continuité écologique</th>
<th>Critère(s) d’attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonne continuité écologique, les milieux sont liés</td>
<td>La zone humide est entourée de milieux naturels ou 50% de la zone humide est directement lié à des milieux naturels (milieu forestier, vaste secteur prairial).</td>
</tr>
<tr>
<td>Continuité écologique moyenne, les milieux ne sont pas directement liés mais la faible distance peut engendrer un transfert d'espèces</td>
<td>Moins de 50% de la zone humide est directement en contact avec des milieux naturels (présence de zones urbaines à proximité, de routes, d'une forte proportion de parcelles cultivées). La zone humide est scindée par une infrastructure linéaire. La zone humide reste connectée à d'autres milieux naturels au moyen d'un corridor particulier (fossé et bande enherbée, haie...).</td>
</tr>
<tr>
<td>La zone est totalement déconnectée de tout autre milieu naturel, il n'y a pas de continuité écologique</td>
<td>Zone humide totalement isolée des autres milieux naturels (dans secteur urbain, cultivé ou routes uniquement), aucun corridor ne permet le transfert d'espèces.</td>
</tr>
</tbody>
</table>
2.3.5. Fonction(s) biologique(s)

Cette rubrique permet d’identifier les grandes caractéristiques des fonctions écologiques des zones humides.

<table>
<thead>
<tr>
<th>Fonctions biologiques</th>
<th>Critère(s) d’attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>FONCTION D’HABITAT POUR LES POPULATIONS ANIMALES OU VEGETALES</td>
<td>Toute zone humide</td>
</tr>
<tr>
<td>Connexions biologiques</td>
<td>Zone humide connectée à un plan d’eau, connectée à d’autres milieux naturels</td>
</tr>
<tr>
<td>Etapes migratoires, zones de stationnement, dortoirs</td>
<td>Vaste zone humide dans zone inondable, grandes zones de prairies et d’étangs historiques</td>
</tr>
<tr>
<td>Zone particulière d’alimentation pour la faune</td>
<td>Toute zone humide</td>
</tr>
<tr>
<td>Zone particulière liée à la reproduction</td>
<td>Toute zone humide</td>
</tr>
<tr>
<td>Autre intérêt fonctionnel d’ordre écologique</td>
<td>Toute zone humide</td>
</tr>
</tbody>
</table>

2.4. Activités et usages

2.4.1. Activité(s)

Ce critère permet d’évaluer l’impact anthropique sur la zone humide.

Valeurs possibles :

<table>
<thead>
<tr>
<th>Pas d’activité marquante</th>
<th>Infrastructures linéaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>Aérodrome, aéroport, héliport</td>
</tr>
<tr>
<td>Sylviculture</td>
<td>Port</td>
</tr>
<tr>
<td>Elevage/pastoralisme</td>
<td>Extraction de granulats, mines</td>
</tr>
<tr>
<td>Pêche</td>
<td>Activité hydroélectrique, barrage</td>
</tr>
<tr>
<td>Chasse</td>
<td>Activité militaire</td>
</tr>
<tr>
<td>Navigation</td>
<td>Gestion conservatoire</td>
</tr>
<tr>
<td>Tourisme et loisirs</td>
<td>Prélèvements d’eau</td>
</tr>
<tr>
<td>Urbanisation</td>
<td>Industrie</td>
</tr>
</tbody>
</table>

2.4.2. Valeur(s) socio-économique(s)

Cette valeur permet de souligner les grandes caractéristiques des fonctions socio-économiques des zones humides.

Valeurs possibles :

<table>
<thead>
<tr>
<th>Réservoir pour l’alimentation en eau potable</th>
<th>Intérêt paysager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production biologique</td>
<td>Intérêt pour les loisirs/valeurs récréatives</td>
</tr>
<tr>
<td>Production agricole et sylvicole</td>
<td>Valeur scientifique</td>
</tr>
<tr>
<td>Production de matières premières</td>
<td>Valeur culturelle</td>
</tr>
<tr>
<td>Intérêt pour la valorisation pédagogique/éducation</td>
<td>Nuisance sur les conditions de vie des populations humaines résidentes</td>
</tr>
</tbody>
</table>

2.4.3. Facteur(s) d’influence

Il s’agit de déterminer quels facteurs, d’origine naturelle ou anthropique, jouent un rôle important dans l’équilibre écologique de la zone et peuvent, à plus ou moins long terme, conditionner l’évolution de la zone.
Valeurs possibles :

<table>
<thead>
<tr>
<th>Passerelle d’influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPLANTATION, MODIFICATION OU FONCTIONNEMENT D’INFRASTRUCTURES ET AMENAGEMENTS LOURDS</td>
</tr>
<tr>
<td>Habitats humains, zone urbanisée</td>
</tr>
<tr>
<td>Zone industrielle ou commerciale</td>
</tr>
<tr>
<td>Infrastructure linéaire, réseaux de communication</td>
</tr>
<tr>
<td>Extraction de matériaux</td>
</tr>
<tr>
<td>Dépôt de matériaux, décharge</td>
</tr>
<tr>
<td>Equipements sportifs et de loisirs</td>
</tr>
<tr>
<td>Infrastructure et équipement agricole</td>
</tr>
<tr>
<td>POLLUTIONS ET NUISANCES</td>
</tr>
<tr>
<td>Rejets substances polluantes dans les eaux</td>
</tr>
<tr>
<td>Rejets substances polluantes dans les sols</td>
</tr>
<tr>
<td>Rejets substances polluantes dans l’atmosphère</td>
</tr>
<tr>
<td>Nuisances liées à la sur-fréquentation, au piétinement</td>
</tr>
<tr>
<td>PRATIQUES LIÉES À LA GESTION DES EAUX</td>
</tr>
<tr>
<td>Comblement, assèchement, drainage, poldérisation des zones humides</td>
</tr>
<tr>
<td>Mise en eau, submersion, création de plan d’eau</td>
</tr>
<tr>
<td>Modification des fonds, des courants</td>
</tr>
<tr>
<td>Création ou modification des berges ou des digues, îles et îlots artificiels, remblais et déblais</td>
</tr>
<tr>
<td>Entretien rivières, canaux, fossés, plans d’eau</td>
</tr>
<tr>
<td>Modification du fonctionnement hydraulique</td>
</tr>
<tr>
<td>Action sur la végétation immergée, flottante, ou amphibie, y compris faucardage et démottage</td>
</tr>
<tr>
<td>Péche professionnelle</td>
</tr>
<tr>
<td>PRATIQUES AGRICOLES ET PASTORALES</td>
</tr>
<tr>
<td>Mise en culture, travaux du sol</td>
</tr>
<tr>
<td>Débroussaillage, suppression haies et bosquets, remembrements et travaux connexes</td>
</tr>
<tr>
<td>Jachère, abandon provisoire</td>
</tr>
<tr>
<td>Traitement de fertilisation et pesticides</td>
</tr>
<tr>
<td>Pâturage</td>
</tr>
<tr>
<td>Suppression ou entretien de la végétation, fauchage et fenaison</td>
</tr>
<tr>
<td>Abandon de systèmes culturaux et pastoraux, apparition de friches</td>
</tr>
<tr>
<td>Plantation de haies et de bosquets</td>
</tr>
<tr>
<td>PRATIQUES ET TRAVAUX FORESTIERS</td>
</tr>
<tr>
<td>Coupes, abattages, arrachages et déboisements</td>
</tr>
<tr>
<td>Taille, élagage</td>
</tr>
<tr>
<td>Plantation, semis et travaux connexes</td>
</tr>
<tr>
<td>Entretiens liés à la sylviculture, nettoyage, épandage</td>
</tr>
<tr>
<td>Autre aménagement forestier, accueil du public, création de pistes</td>
</tr>
<tr>
<td>PRATIQUES LIÉES AUX LOISIRS</td>
</tr>
<tr>
<td>Sport et loisir de plein air</td>
</tr>
<tr>
<td>Chasse</td>
</tr>
<tr>
<td>Péche</td>
</tr>
<tr>
<td>Cueillette et ramassage</td>
</tr>
<tr>
<td>PRATIQUES DE GESTION OU D’EXPLOITATION DES ESPÈCES ET HABITATS OU AQUACOLES</td>
</tr>
<tr>
<td>Prélévement sur la faune ou la flore</td>
</tr>
<tr>
<td>Introduction, gestion ou limitation des populations</td>
</tr>
<tr>
<td>Gestion des habitats pour l’accueil et l’information du public</td>
</tr>
<tr>
<td>Autre pratiques de gestion ou d’exploitations des espèces et habitats</td>
</tr>
<tr>
<td>Aménagements liés à la pisciculture ou à la conchyliculture</td>
</tr>
</tbody>
</table>
3. Contexte institutionnel, réglementaire, contractuel

3.1 Mesures de protection des espaces

Référence des données

<table>
<thead>
<tr>
<th>Donnée</th>
<th>Source</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrains acquis par le Conservatoire des Sites Lorrains</td>
<td>Conservatoire des Sites Lorrains</td>
<td>2012</td>
</tr>
<tr>
<td>Zones Spéciales de Conservation</td>
<td>DREAL Lorraine</td>
<td>2010</td>
</tr>
<tr>
<td>Propositions de Sites d’Intérêt Communautaire</td>
<td>DREAL Lorraine</td>
<td>2011</td>
</tr>
<tr>
<td>Zones Naturelles d’Intérêt Ecologique, Faunistique et Floristique</td>
<td>DREAL Lorraine</td>
<td>2011</td>
</tr>
<tr>
<td>Espaces Naturels Sensibles</td>
<td>Conseil général de la Moselle</td>
<td>2004 (Moselle)</td>
</tr>
</tbody>
</table>

Il s’agit des protections qui s’appliquent aux espaces naturels. Cette rubrique est remplie par croisement SIG entre les différentes couches cartographiques de protection des espaces (liste ci-dessus) et les zones humides inventoriées.

3.2 Mesures de protection des milieux aquatiques

Référence des données

<table>
<thead>
<tr>
<th>Donnée</th>
<th>Source</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan de Prévention du Risque Inondation approuvé</td>
<td>DDE</td>
<td>2002</td>
</tr>
<tr>
<td>Périmètre de protection de captage</td>
<td>ARS</td>
<td>2012</td>
</tr>
</tbody>
</table>

Cette rubrique concerne les protections réglementaires qui s’appliquent à des zones particulières du milieu aquatique. Cette rubrique est remplie par croisement SIG entre les
différentes couches cartographiques de protection des milieux aquatiques (liste ci-dessus) et les zones humides inventoriées.

3.3 Instruments contractuels et financiers

Référence de la donnée

<table>
<thead>
<tr>
<th>Donnée</th>
<th>Source</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document d’objectif Natura 2000</td>
<td>DREAL Lorraine</td>
<td>2010</td>
</tr>
</tbody>
</table>

Cette rubrique est remplie par croisement SIG entre les différentes couches cartographiques (liste ci-dessus) et les zones humides inventoriées.

4. Evaluation

4.1 Fonctions et valeurs majeures

Cette rubrique rappelle les principales fonctions (hydrologiques, écologiques, biologiques, socio-économiques) des milieux de manière synthétique.
La définition de ce critère est faite de manière qualitative et à dire d’experts.

4.2 Diagnostic fonctionnel hydraulique

Il s’agit ici d’apporter un avis d’expertise sur l’état de la zone et de son fonctionnement.

Valeurs possibles :

<table>
<thead>
<tr>
<th>Fonctionnement observé proche de « l’équilibre naturel »</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonctionnement observé « sensiblement dégradé ne remettant pas en cause les équilibres naturels »</td>
</tr>
<tr>
<td>Fonctionnement observé « dégradé, perturbant les équilibres naturels »</td>
</tr>
<tr>
<td>Fonctionnement observé « très dégradé, les équilibres étant rompus »</td>
</tr>
</tbody>
</table>

Une note décrivant la cause de dégradation de la zone humide a été ajoutée dans le cas où le fonctionnement est considéré comme dégradé ou très dégradé.

Un fonctionnement dégradé est observé en cas de stockage de matériaux, déchets, présence de remblais, dégradation flagrante due à l’Homme, ... mais dont le retour à un état moins dégradé est possible.

Un fonctionnement très dégradé est observé lorsque les dégradations sont irréversibles.

4.3 Menaces potentielles ou avérées

Cette rubrique met en parallèle l’état de conservation du milieu avec les évolutions potentielles naturelles ou liées au développement d’activités.
La définition de ce critère est faite de manière qualitative et à dire d’experts.

Lorsque le fonctionnement hydraulique d’une zone est qualifié de dégradé ou très dégradé, la cause de la dégradation est reprise dans le critère « menaces ». On parle alors de menace avérée (exemple : remblais, dépôt de gravats...). Sont également concernées les menaces telles que les infrastructures linéaires.
Les menaces « pâturage », « sylviculture » et « urbanisation » sont des menaces potentielles qui pourraient devenir effectives en cas de surpâturage, de gestion sylvicole intensive ou d’extension des zones urbanisées.
5. Orientation d’action

L’étude de la zone humide doit aboutir à une réflexion sur son état et les mesures à prendre pour la conserver et la restaurer. La définition de ce critère est faite de manière qualitative et à dire d’experts.

Lorsqu’une zone humide est pâturée, l’action préconisée est « Maintien d’un pâturage extensif ». Lorsqu’une zone humide se situe dans un contexte forestier, l’action préconisée est « Pratiquer une gestion sylvicole extensive ».

Les autres préconisations sont attribuées selon les conditions du milieu.

Ces orientations d’action constituent des éléments de réflexion pour définir les préconisations qui seront inscrites dans le SAGE.
Fiche descriptive des plans d’eau

PE_001

Plan d’eau caractérisé sur le terrain

<table>
<thead>
<tr>
<th>Renseignements généraux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localisation administrative : HOSTE</td>
</tr>
<tr>
<td>Coordonnées GPS du centreïde X : 8.642011 Y : 49.05036</td>
</tr>
<tr>
<td>Bassin versant de surface : A914 Le Moderbach de sa source au Ruhbrecher (inclus).</td>
</tr>
<tr>
<td>Bassin versant souterrain : 507a Grès à roseaux/dolomies du Keuper de Lorraine Nord</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description générale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de retenue : Etang</td>
</tr>
<tr>
<td>Type d’alimentation : Ruisselement ou nappe</td>
</tr>
<tr>
<td>Présence d’ouvrages</td>
</tr>
<tr>
<td>Ouvrage d’admission : /</td>
</tr>
<tr>
<td>Commentaires : Ouvrages non visibles.</td>
</tr>
<tr>
<td>Ouvrage de restitution : /</td>
</tr>
<tr>
<td>Surface : 250 m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage et gestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage : Agrément</td>
</tr>
<tr>
<td>Type de berges : Douces</td>
</tr>
<tr>
<td>Trace de gestion : Non</td>
</tr>
<tr>
<td>Commentaires :Pas de commentaires.</td>
</tr>
<tr>
<td>Impacts : Diminution importante du débit du cours d’eau si à la source d’un cours d’eau. Diminution de la réserve d’eau si connecté uniquement à la nappe.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Milieu naturel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existence de végétation rivulaire (strate herbacée, arbustive et/ou arborée) : Oui</td>
</tr>
<tr>
<td>Présence d’un cordon d’hélophytes : Non</td>
</tr>
<tr>
<td>Habitat (s) Corine Biotope : 53.11 Phragmites 53.13 Typhales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pas de commentaire.</td>
</tr>
</tbody>
</table>

Inventaire des plans d’eau - SAGE du Bassin Houiller - SCOT du Val de Rosselle

Asconit Consultants - Juin 2012
1. Renseignements généraux

La fiche descriptive des plans d’eau présente dans la majorité des cas une photographie du plan d’eau concerné ainsi qu’un extrait cartographique identifiant la localisation exacte sur fond IGN-Scan 25. La majorité des exports est effectuée à l’échelle 1/25000 mais les plans d’eau de taille importante sont présentés à une échelle inférieure. Sont présentées également les correspondances avec la planche atlas et la fiche zone humide si le plan d’eau est connecté à une zone humide. La mention « plan d’eau caractérisé par photointérprétation » permet de distinguer les étendues d’eau non caractérisées sur le terrain.

N° : La superficie à prospecter était telle qu’il nous a été impossible de contacter l’ensemble des propriétaires des plans d’eau pour accéder à ces plans d’eau (beaucoup sont clôturés, inaccessibles) et compléter les critères non visibles (présence d’ouvrages d’admission et de restitution, type de berges, traces de gestion,…).

1.1 Nom du plan d’eau

Les plans d’eau sont nommés de la manière suivante : PE_xxx.

1.2 Localisation administrative

La localisation administrative a été déterminée par croisement de la couche cartographique des communes de France avec la couche cartographique des plans d’eau répertoriés. Si une zone humide est présente sur plusieurs communes, la totalité des communes concernées a été renseignée.

1.3 Coordonnées GPS

1.4 Code du bassin versant de surface

Le bassin versant de surface a été déterminé par croisement de la couche des bassins versants du bassin Rhin-Meuse avec la couche cartographique des plans d’eau répertoriés.

1.5 Code du bassin versant souterrain

Le bassin versant souterrain a été déterminé par croisement de la couche des bassins versants du bassin Rhin-Meuse avec la couche cartographique des plans d’eau répertoriés.
2. Description générale

2.1 Type de retenue
Cette rubrique renseigne sur la typologie du plan d’eau.

Valeurs possibles :

<table>
<thead>
<tr>
<th>Etangs de loisirs ou de pêche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan d’eau agricole</td>
</tr>
<tr>
<td>Mare forestière</td>
</tr>
<tr>
<td>Bassin de rétention</td>
</tr>
</tbody>
</table>

2.2 Type d’alimentation
Le type d’alimentation d’un plan d’eau permet de déterminer les impacts de ce dernier sur le milieu aquatique.

Valeurs possibles :

<table>
<thead>
<tr>
<th>Cours d’eau, plan d’eau en dérivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d’eau, plan d’eau en série</td>
</tr>
<tr>
<td>Ruissellement ou nappe</td>
</tr>
<tr>
<td>Ruissellement/rejets (eaux usées, eaux industrielles, rejets de drainage...)</td>
</tr>
</tbody>
</table>

2.3 Présence d’ouvrages d’admission/restitution
La présence d’ouvrages d’admission et de restitution d’eau a été notée sur le terrain dès que l’information était visible.

Un commentaire sur le type ou l’état de l’ouvrage permet de préciser la description.

2.4 Superficie
La surface (en mètres carrés) de chaque plan d’eau a été déterminée sous Systèmes d’Information Géographique (ArcGIS 9.3).
3. Usage et gestion

3.1 Usage

L’impact d’un plan d’eau est en partie conditionné par son usage.

Valeurs possibles :

<table>
<thead>
<tr>
<th>Agrément</th>
<th>Réétention des eaux</th>
<th>Alimentation de la faune</th>
<th>Epuration</th>
</tr>
</thead>
</table>

3.2 Type de berge

Le type de berge conditionne la qualité du milieu aquatique.

Valeurs possibles :

<table>
<thead>
<tr>
<th>Verticales (de 67° à 90°)</th>
<th>Inclinées (de 22° à 67°)</th>
<th>Douces (< 22°)</th>
</tr>
</thead>
</table>

3.3 Trace de gestion

Il s’agit de déterminer si le plan d’eau est régulièrement entretenu.

Valeurs possibles : oui/non.

En cas de trace de gestion, un commentaire permet de décrire le type de gestion mis en œuvre.

3.4 Impacts

Il s’agit d’un commentaire d’expert sur l’impact potentiel des plans d’eau sur les milieux aquatiques.

Ces impacts sont déterminés à partir des critères précédemment renseignés :

- Un plan d’eau alimenté par un cours d’eau peut avoir pour conséquence de modifier l’écoulement (ralentissement des eaux) et la qualité physico-chimique du cours d’eau (accumulation de charges de pollution) et ainsi de banaliser les habitats et les populations présentes.
- Un plan d’eau placé en série d’un cours d’eau peut avoir pour effet un refroidissement du cours d’eau en période hivernale, et un réchauffement de ce dernier en période estivale, modifications néfastes pour la faune aquatique. Ces changements peuvent être accompagnés d’une diminution de la teneur en oxygène dissous à l’origine de la mortalité piscicole. Un plan d’eau en série peut également constituer une entrave à la circulation piscicole (les poissons ne peuvent plus rejoindre les frayères).
- Un plan d’eau placé en dérivation d’un cours d’eau peut avoir un impact sur le milieu aquatique lors des opérations de vidange : relargage des matières en suspension provoquant un colmatage du lit mineur du cours d’eau et des frayères sur plusieurs dizaines de mètres en aval et une perte de la qualité du milieu ; une augmentation de la température et des concentrations en ammonium ; et enfin un risque d’introduction dans le cours d’eau d’espèces piscicoles indésirables.
- Un plan d’eau placé à la source d’un cours d’eau peut provoquer une diminution importante du débit du cours d’eau en période d’étiage, voire un assec de ce dernier ou peut avoir un impact sur la réserve d’eau souterraine.

4. Milieu naturel

4.1 Existence de végétation rivulaire, présence d’un cordon d’hélophytes et habitats Corine Biotope

La présence de végétation rivulaire ou d’un simple cordon d’hélophytes accroit considérablement la qualité d’un plan d’eau.

L’habitat Corine Biotope permet de préciser les types de milieux présents. Sont précisés le code et l’intitulé des habitats présents.

5. Commentaire

Les informations récoltées en dehors du terrain, par photointerprétation ou interprétation de l’IGN-Scan 25, figurent dans cette rubrique.
PARTIE 5

METHODOLOGIE DE HIERARCHISATION DES ZONES HUMIDES
Hiérarchisation des zones humides

L’objectif de la hiérarchisation est de mettre en avant des zones humides prioritaires, fonctionnelles et présentant un intérêt pour la gestion de l’eau, dans le but d’assurer leur protection.

La méthodologie de hiérarchisation développée dans le cadre de l’inventaire est issue du croisement de cinq études :
- Identification des zones humides d’intérêt environnemental particulier (ZHIEP) et des zones stratégiques pour la gestion de l’eau (ZSGE) sur le bassin de la Vienne, Etablissement Public Territorial du Bassin de la Vienne, 2009
- Identification des secteurs à zones humides d’intérêt environnemental particulier et à zones stratégiques pour la gestion de l’eau situées sur le périmètre du SAGE du bassin Yevre-Auron, Conseil général du Cher, 2011

Cette méthodologie se base sur la détermination d’enjeux sur le territoire et de fonctionnalité des zones humides.
Les zones humides prioritaires *pour la gestion de l’eau* sont mises en évidence au moyen du filtre n°1.
L’application du filtre n°2 va permettre de faire ressortir les zones humides prioritaires *pour la biodiversité ou pour les loisirs*.
Le dernier filtre permet de mettre en avant des *zones humides dégradées* caractérisées sur le terrain comme possédant un fonctionnement hydraulique dégradé ou très dégradé.

1. Présentation de la méthodologie de hiérarchisation

L’ensemble du territoire peut être caractérisé par six enjeux :
- Enjeu alimentation en eau potable
- Enjeu qualité de l’eau
- Enjeu étiage
- Enjeu inondation
- Enjeu biodiversité
- Enjeu usages récréatifs

L’objectif est tout d’abord de déterminer une cartographie de ces enjeux sur l’ensemble du territoire (enjeu très faible à enjeu fort). La superposition de ces enjeux avec le contour des zones humides va permettre de déterminer si la zone humide se situe sur une zone à enjeu fort.
La caractérisation des fonctions hydrauliques et écologiques des zones humides (zones humides peu fonctionnelles à très fonctionnelles) permettra ensuite d’identifier les zones humides fonctionnelles situées sur des secteurs à fort enjeu.
1.1 Détermination des enjeux sur le territoire

La première étape consiste à diviser la zone d'étude en mailles de 100 mètres de longueur (longueur déterminée en comité technique d’après la précision des données utilisées) et de forme hexagonale (plus proche de la réalité qu’une maille de forme carrée).

L’objectif est d’attribuer à chacune de ces mailles une note de 1 à 4 (enjeu très faible à enjeu fort) en vue d’établir une cartographie de chaque enjeu sur l’ensemble du territoire.

Ces notes vont être déterminées par l’analyse de plusieurs éléments d’évaluation issus essentiellement de l’état des lieux du SAGE (cf 2.1 et 3.1 de la même partie pour la méthode de détermination des notes).

Exemple de cartographie des enjeux

Le contour des zones humides va ensuite être superposé à cette cartographie afin de déterminer si les zones humides sont présentes ou non sur un secteur à enjeu.

La zone humide possèdera, pour chaque enjeu, une note de 1 à 4 correspondant à la note maximale des mailles qu’elle recouvre.
Exemple d’attribution des notes
ZH_123 aura la note de 2 (enjeu faible) et ZH_218 aura la note 3 (enjeu moyen).

1.2 Détermination des fonctions des zones humides

Chacun des enjeux est associé à des fonctions particulières des zones humides telles que précisées dans le tableau ci-dessous.

<table>
<thead>
<tr>
<th>Enjeu</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimentation en eau potable</td>
<td>Préservation de la ressource en eau (stockage et filtration de l’eau au sein de la zone humide)</td>
</tr>
<tr>
<td>Qualité de l’eau</td>
<td>Régulation des nutriments et rétention des micropolluants et interception des matières en suspension</td>
</tr>
<tr>
<td>Etiage</td>
<td>Régulation des débits d’étiage</td>
</tr>
<tr>
<td>Inondation</td>
<td>Étalement et retardement des crues</td>
</tr>
<tr>
<td>Biodiversité</td>
<td>Réservoir de biodiversité et rôle fonctionnel écologique</td>
</tr>
<tr>
<td>Usages récréatifs</td>
<td>Intérêt récréatif de la zone humide</td>
</tr>
</tbody>
</table>

De la même manière, ces fonctions peuvent être décrites au moyen d’éléments d’évaluation, cette fois-ci issus de l’inventaire terrain.
Chaque zone humide aura ainsi une note de 1 à 4 (zone humide peu fonctionnelle à très fonctionnelle).
1.3 **Hiérarchisation des zones humides**

L’ensemble des zones humides présentera des couples de notes enjeu/fonction tels que présentés dans l’exemple ci-dessous.

<table>
<thead>
<tr>
<th>CRITERES DE PRIORITE 1</th>
<th>ZH_001</th>
<th>ZH_002</th>
<th>ZH_003</th>
<th>ZH_004</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITERES ALIMENTATION EN EAU POTABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enjeu AEP sur le BV</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Préservation de la ressource AEP</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CRITERES QUALITE DES EAUX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enjeu Qualité de l’eau</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Régulation des nutriments, rétention des micropolluants et interception des matières en suspension</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CRITERES INONDATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enjeu Inondation</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Étalement et retardement des crues</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRITERES DE PRIORITE 2</th>
<th>ZH_001</th>
<th>ZH_002</th>
<th>ZH_003</th>
<th>ZH_004</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITERES BIODIVERSITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enjeu Biodiversité</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Biodiversité et rôle fonctionnel écologique</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRITERES SOCIO-ECONOMIQUES</th>
<th>ZH_001</th>
<th>ZH_002</th>
<th>ZH_003</th>
<th>ZH_004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enjeu usages récréatifs</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Rôle dans les usages récréatifs au sein des zones humides</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRITERE P3</th>
<th>ZH_001</th>
<th>ZH_002</th>
<th>ZH_003</th>
<th>ZH_004</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITERE EXCEPTIONNEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zones humides dégradées</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La combinaison de la note d’enjeu et de la note de fonction de la zone humide permettra de déterminer si le site est prioritaire ou non.
L’application des filtres ci-dessous permettra de déterminer si la zone humide est prioritaire ou non.

FILTRE n°1

CRITERES DE PRIORITE 1

CRITERES HYDRAULIQUES

Au moins un couple Enjeu / Fonction hydraulique = (4, 4) ou (4,3) ou (3,4)

![Diagramme filtrer n°1](image)

FILTRE n°2

CRITERES DE PRIORITE 2

CRITERES BIODIVERSITE

Couple Enjeu écologique / Fonction écologique = (4,4) ou (3,4) ou (4,3)

![Diagramme filtrer n°2](image)

CRITERES DE PRIORITE 2

CRITERES USAGES RECREATIFS

Couple Enjeu récréatif / Fonction récréative = (4,4) ou (3,4) ou (4,3)

![Diagramme filtrer n°3](image)

FILTRE n°3

CRITERE DE PRIORITE 3

ZONE HUMIDE Degradee

Diagnostic fonctionnel hydraulique dégradé ou très dégradé

![Diagramme filtrer n°3](image)

Dans l’exemple précédent,
- la zone humide ZH_001 est prioritaire pour la gestion de l’eau (couple enjeu/fonction « Alimentation en eau potable » = 4/3),
- la zone humide ZH_002 est prioritaire pour la biodiversité (couple enjeu/fonction « biodiversité » = 3/4),
- la zone humide ZH_003 est prioritaire pour les loisirs (couple enjeu/fonction « usages récréatifs » = 4/4),
- la zone humide ZH_004 est prioritaire car le diagnostic fonctionnel hydraulique est considéré comme très dégradé.
2. Critères de priorité 1 – Critères hydrauliques / Filtre n°1

2.1 Détermination des enjeux sur le territoire

Les critères de priorité 1 regroupent les enjeux hydrauliques du SAGE.

Quatre enjeux sont ainsi représentés :
- Enjeu alimentation en eau potable
- Enjeu qualité de l’eau
- Enjeu étiage
- Enjeu inondation

Chaque enjeu peut être défini au moyen de plusieurs éléments d’évaluation. Selon le niveau de précision des données utilisées, chaque élément d’évaluation est classé de 1 à 4 (enjeu très faible à enjeu fort). Pour déterminer l’enjeu sur le territoire, la moyenne de ces notes a été effectuée et la valeur retenue est l’entier supérieur.

Exemple : l’enjeu « inondation » est caractérisé par trois éléments d’évaluation. La moyenne de ces trois notes donne une note de 2,3 pour la maille n°1, la note attribuée à la maille est 3 (arrondi à l’entier supérieur).

Nb : La totalité des éléments d’évaluation disponibles de manière homogène sur le territoire a été utilisée pour l’attribution des notes.
2.1.1 Enjeu « alimentation en eau potable »

<table>
<thead>
<tr>
<th>Priorité hydraulique</th>
<th>Eléments d'évaluation</th>
<th>Données utilisées</th>
<th>Source et date des données</th>
<th>Valeurs possibles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vulnérabilité de la ressource AEP (liée au contexte karstique ou minier)</td>
<td>Vulnérabilité des aquifères (classes issues de l'état des lieux du SAGE)</td>
<td>Antea, 2004</td>
<td>Faible et très faible vulnérabilité : roches à perméabilité de fissure ou d'interstice en alternance avec roches imperméables, marnes et argiles</td>
</tr>
<tr>
<td></td>
<td>Volumes prélevés pour l'alimentation en eau potable (par masse d'eau souterraine)</td>
<td>Prélèvements pour l'alimentation en eau potable</td>
<td>AERM, 2010</td>
<td>Pas de prélèvements pour l'AEP</td>
</tr>
<tr>
<td></td>
<td>Aire d'alimentation de captage des captages dégradés définis dans le SDAGE</td>
<td>Aire d'alimentation de captage</td>
<td>AERM, 2010</td>
<td>Absence</td>
</tr>
<tr>
<td></td>
<td>Périmètre de protection de captage</td>
<td>Périmètres de protection de captage</td>
<td>ARS, 2012</td>
<td>Absence</td>
</tr>
</tbody>
</table>
La vulnérabilité simplifiée des aquifères a été déterminée d’après la classification déjà établie dans le diagnostic du SAGE du Bassin Houiller. Le type d’aquifère ainsi que la présence de réservoirs miniers sont pris en compte dans cet élément d’évaluation. Plus un secteur est vulnérable (forte perméabilité et/ou présence de réservoirs miniers), plus l’enjeu du territoire est important (la présence d’une zone humide fonctionnelle sur un secteur où l’enjeu est important rend sa préservation prioritaire).

Les volumes d’eau prélevés pour l’alimentation en eau potable sont déterminés par masse d’eau souterraine (5 entités au total). Plus on prélève de l’eau dans une masse d’eau, plus l’enjeu est important.

La présence d’une aire d’alimentation de captage ou d’un périmètre de protection de captage sur un secteur lui confère un enjeu fort. Pour les points de captage dont le périmètre de protection n’est pas déterminé, une zone tampon de 200ha a été créée autour de chaque captage (cette valeur correspond à la moyenne des surfaces des périmètres de captage sur le territoire du SAGE). Faute de données plus précises, cette zone tampon a été centrée sur le point de captage. La présence d’une zone humide dans cette zone tampon confère à cette zone un enjeu fort.

La moyenne de ces quatre éléments d’évaluation permet d’attribuer une note pour l’enjeu « alimentation en eau potable » à chaque maille du territoire.
2.1.2 Enjeu « qualité de l’eau »

<table>
<thead>
<tr>
<th>Priorité hydraulique</th>
<th>Eléments d'évaluation</th>
<th>Données utilisées</th>
<th>Source et date des données</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enjeu qualité de l'eau sur le territoire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>État des masses d'eau (Directive Cadre Européenne sur l'Eau)</td>
<td>Masse d'eau superficielle</td>
<td>AERM, 2011</td>
<td>Bon état de la masse d'eau superficielle ou bon état de la masse d'eau souterraine</td>
<td></td>
<td></td>
<td>Mauvais état global de la masse d'eau superficielle ou mauvais état de la masse d'eau souterraine</td>
</tr>
<tr>
<td></td>
<td>Masse d'eau souterraine</td>
<td></td>
<td>AERM, 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pollution : occupation du sol</td>
<td>Corine Land Cover</td>
<td>IFEN, 2006</td>
<td>Zone humide dans zone forestière ou prairiale</td>
<td></td>
<td></td>
<td>Zone humide dans zone urbaine ou culture</td>
</tr>
<tr>
<td></td>
<td>Pollution : présence de sources de pollution potentielle/avérée (par bassin versant)</td>
<td>sites SEVESO</td>
<td>DRIRE, 2009</td>
<td>De 0 à 2 sources de pollutions inventoriées sur le territoire</td>
<td>De 7 à 53 sources de pollutions inventoriées sur le territoire</td>
<td>De 7 à 53 sources de pollutions inventoriées sur le territoire</td>
<td>De 54 à 276 sources de pollutions inventoriées sur le territoire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sites BASOL/BASIAS</td>
<td>BRGM, 2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICPE</td>
<td>DRIRE, 2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rejets des STEP</td>
<td>AERM, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Décharges</td>
<td>CG 57, 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La présence d’occupation du sol source de pollution (zone urbaine → pollution domestique ou zone cultivée → pollution agricole) confère au secteur un enjeu fort.

La présence de sources de pollution ponctuelles ou diffuses (site SEVESO, site BASOL, ICPE, rejet de station d’épuration ou décharge) confère au secteur un enjeu fort.
On considère qu’à partir de 7 sources de pollution par masse d’eau superficielle, l’enjeu est important (note 3 : enjeu moyen).

La moyenne de ces trois éléments d’évaluation permet d’attribuer une note pour l’enjeu « qualité de l’eau » à chaque maille du territoire.
2.1.3 Enjeu « étiage »

Le contexte minier du territoire permettait un soutien des étiages des cours d'eau au moyen du pompage des exhaures des mines. Ces prélèvements ont cependant été stoppés depuis 2006. Quelques actions après-mine ont été mises en place pour soutenir l’étiage des cours d'eau mais elles restent très anecdotiques.

Le territoire du Bassin Houiller se trouve actuellement dans un régime transitoire. L’arrêt des exhaures minières va provoquer un ennoyage complet des mines et une remontée de la nappe des Grès du Trias inférieur à plus ou moins long terme. Les cours d'eau deviendront ainsi davantage drainant et on peut envisager que les étiages seront moins marqués et que la qualité de l’eau sera améliorée.

L’enjeu étiage existe bien sur le territoire mais n’est pas stable au vu des modifications en cours sur le Bassin Houiller. De plus, l’absence de données précises sur l’étiage des cours d’eau au sein du territoire (il existe deux stations hydrométriques sur le territoire mais l’une d’entre elle n’est pas exploitable) n’a pas permis d’intégrer l’enjeu étiage à la méthodologie de hiérarchisation des zones humides.

En concertation avec les membres du comité technique (Agence de l’Eau Rhin-Meuse, DREAL Lorraine, Conseil Général de Moselle), il a été décidé d’écarter cet enjeu de la phase de hiérarchisation. Il pourra cependant être réintégré lors de la prochaine révision du SAGE.
2.1.4 Enjeu « inondation »

<table>
<thead>
<tr>
<th>Priorité hydraulique</th>
<th>Eléments d'évaluation</th>
<th>Données utilisées</th>
<th>Source et date des données</th>
<th>Valeurs possibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enjeu Inondation sur le territoire</td>
<td>Risque d'inondation</td>
<td>Catastrophe naturelle inondation</td>
<td>MEDD, 2009</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>Remontée des nappes dans le futur</td>
<td>Asconit Consultants, 2012</td>
<td>absence de zone humide future</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zones inondables PPRI</td>
<td>DDAF, 2007 DDE, 2002</td>
<td>non</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zones urbaines</td>
<td>IFEN, 2006</td>
<td>non</td>
<td></td>
</tr>
</tbody>
</table>

Le risque d'inondation sur le territoire a été déterminé à partir de quatre données. La présence de ces éléments confère au territoire un enjeu fort :
- la présence d’un nombre important d’arrêtés de catastrophe naturelle « inondation »,
- la présence d’une zone humide future, issue de l’analyse des modélisations effectuées ces dernières années,
- la présence de zones inondables,
- la présence de zones urbaines, vulnérables aux inondations.

La moyenne de ces quatre données permet d’attribuer une note pour l’enjeu « inondation » à chaque maille du territoire.
2.2 Détermination des enjeux des zones humides

La superposition du contour des zones humides avec les cartographies d’enjeu permet de remplir les cases suivantes du tableau général :

<table>
<thead>
<tr>
<th>CRITÈRES DE PRIORITÉ 1</th>
<th>CRITÈRES ALIMENTATION EN EAU POTABLE</th>
<th>Enjeu AEP sur le BV</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Préservation de la ressource AEP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRITÈRES QUALITÉ DES EAUX</td>
<td>Enjeu Qualité de l’eau</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Régulation des nutriments, rétention des micropolluants et interception des matières en suspension</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRITÈRES INONDATIONS</td>
<td>Enjeu Inondation</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Etalement et retardement des crues</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3 Détermination des fonctions hydrauliques des zones humides

L’ensemble des fonctions hydrauliques des zones humides (préservation de la ressource AEP, régulation des nutriments, régulation des débits d’étiage et étalement et retardement des crues) peuvent être caractérisées par les mêmes éléments d’évaluation :

- La pente moyenne de la zone humide permet de définir la capacité de rétention d’eau de la zone humide. Plus la pente est faible, plus l’eau est retenue dans la zone humide (positif pour l’étiage et l’étalement des crues), plus les fonctions épuratrices sont efficaces (meilleure qualité de l’eau et enjeu alimentation en eau potable préservé).

- La surface de la zone humide, couplée à la pente, permet de définir la capacité de rétention d’eau de la zone humide. Plus la surface est importante, plus le volume d’eau retenu est important (important pour le soutien d’étiage, l’étalement des crues, la ressource AEP et la qualité de l’eau).

- La densité de zones humides au sein d’une masse d’eau superficielle permet de déterminer la capacité globale de la masse d’eau en termes d’épuration et de retenue d’eau. Plus le nombre de zones humides par masse d’eau est élevé, plus la fonction épuratoire est importante, plus le soutien d’étiage et l’étalement des crues est efficace.

- La connexion d’une zone humide à un réseau d’eau superficiel ou souterrain permet une épuration des eaux, un soutien d’étiage et un étalement des crues.

- La position d’une zone humide dans le bassin versant permet de caractériser à la fois les zones humides de tête de bassin de taille modeste et les larges zones humides de plaines alluviales, indispensables pour l’étalement des crues, le soutien d’étiage et l’épuration des eaux.

- L’interconnexion des zones humides permet de caractériser les échanges hydrauliques possibles entre zones humides. Elle est déterminée de la manière suivante : une zone tampon de 50 mètres (valeur validée en comité technique, représentative de la
distance maximale où l'on peut observer une connexion hydraulique entre deux zones humides) est tracée autour de chaque zone humide. L'intersection de ces zones tampons détermine le réseau d'interconnexion des zones humides au sein d'une masse d'eau. La somme de ces surfaces interconnectées est déterminée par bassin versant.

L'interconnexion est égale à la surface interconnectée (zones vertes) rapportée à la surface totale de la masse d'eau concernée (masse d'eau A).

Chacun des éléments d'évaluation est classé de 1 à 4 (zone humide peu fonctionnelle à zone humide très fonctionnelle) :

<table>
<thead>
<tr>
<th>Priorité hydraulique</th>
<th>Éléments d'évaluation</th>
<th>Données utilisées</th>
<th>Source et date des données</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pente moyenne de la zone humide (en %)</td>
<td>Données issues de l'inventaire (valeurs comprises entre 0,57 et 49,54)</td>
<td>Asconit Consultants, 2012</td>
<td>P ≥ 15% (11 entrées)</td>
<td>3,5 < P < 0,0% (115 entrées)</td>
<td>P < 3% (66 entrées)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>Données issues de l'inventaire (valeurs comprises entre 0,026 ha et 102,4ha)</td>
<td>Asconit Consultants, 2012</td>
<td>S ≤ 0,1ha (29 entrées)</td>
<td>1,5 < S ≤ 8ha (81 entrées)</td>
<td>5 < S < 10 ha (20 entrées)</td>
<td>≥ 10 ha (87 entrées)</td>
<td></td>
</tr>
<tr>
<td>Densité (%)</td>
<td>Données issues de l'inventaire (valeurs comprises entre 3,4 et 28,9)</td>
<td>Asconit Consultants, 2012</td>
<td>3,4 < D ≤ 6,39 (35 entrées)</td>
<td>6,39 < D ≤ 15,66 (23 entrées)</td>
<td>15,66 < D ≤ 21,81 (24 entrées)</td>
<td>21,81 < D ≤ 29,91 (83 entrées)</td>
<td></td>
</tr>
<tr>
<td>Fonction hydraulique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connexion</td>
<td>Données issues de l'inventaire</td>
<td>Asconit Consultants, 2012</td>
<td>Type de connexion : "La zone humide n'est pas connectée à un flux d'eau superficiel et substratum géologique perméable"</td>
<td>Type de connexion : "La zone humide est connectée à un flux d'eau superficiel et substratum géologique perméable"</td>
<td>"Entrée d'eau : "Source"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position dans le bassin versant</td>
<td>Rang de Strahler</td>
<td>IGR, Région Lorraine 2011</td>
<td>Pas de connexion à un cours d'eau</td>
<td>Zone liée à un cours d'eau de rang 3</td>
<td>Zone liée à un cours d'eau de rang 4</td>
<td>Zone liée à un cours d'eau de rang 5 ou 6</td>
<td></td>
</tr>
<tr>
<td>Interconnexion (%)</td>
<td>Données issues de l'inventaire (valeurs comprises entre 0 et 5,0103)</td>
<td>Asconit Consultants, 2012</td>
<td>0 (176 entrées)</td>
<td>0,0093 < I ≤ 0,1052 (10 entrées)</td>
<td>0,1052 < I ≤ 0,2018 (20 entrées)</td>
<td>2,218 < I ≤ 3,0103 (13 entrées)</td>
<td></td>
</tr>
</tbody>
</table>
La classification des pentes est issue de la classification utilisée lors de la prélocalisation des zones humides :
- potentiel zone humide faible : pente supérieur à 8,8% → note 1 ou 2
- potentiel zone humide moyen : pente comprise entre 8,8% et 3,5% → note 3
- potentiel zone humide fort : pente inférieure à 3,5% → note 4

Plus la note est élevée, plus la zone humide est fonctionnelle.

En concertation avec le comité technique, il a été déterminé qu’à partir d’une surface de 5 hectares, une zone humide est considérée comme intéressante (note 3). À partir de 10 hectares, une zone humide est très fonctionnelle (note 4).

La classification des valeurs de densité s’est effectuée par la méthode des seuils naturels de Jenks.

Une zone humide dont la connexion à un réseau d’eau superficiel ou souterrain est avérée (zone humide traversée par un cours d’eau ou en bordure de cours d’eau, zone humide alimentée par une source) possède une note maximale de 3 ou 4. Cet élément d’évaluation est issu de l’inventaire terrain et utilise les critères hydrauliques « type de connexion » et « entrée d’eau ».

Une zone humide connectée à un cours d’eau en tête de bassin versant (rangs 1 ou 2 de Strahler) ou dans une plaine alluviale (rangs 5 ou 6 de Strahler, rang maximal observé sur le territoire) est considérée comme plus intéressante d’un point de vue fonctionnel.

La majorité des valeurs d’interconnexion (78%) sont nulles. On regroupe donc l’ensemble de ces valeurs nulles dans la note 1. Les autres valeurs sont classées de la même manière que les valeurs de densité, par la méthode des seuils naturels de Jenks.

La moyenne de ces six éléments d’évaluation permet d’attribuer une note unique aux différentes fonctions hydrauliques de chaque zone humide.

Il est désormais possible de remplir les cases manquantes du tableau :

<table>
<thead>
<tr>
<th>CRITERES DE PRIORITE 1</th>
<th>ZH_001</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITERES ALIMENTATION EN EAU POTABLE</td>
<td></td>
</tr>
<tr>
<td>Enjeu AEP sur le BV</td>
<td>4</td>
</tr>
<tr>
<td>Préservation de la ressource AEP</td>
<td>3</td>
</tr>
<tr>
<td>CRITERES QUALITE DES EAUX</td>
<td></td>
</tr>
<tr>
<td>Enjeu Qualité de l'eau</td>
<td>3</td>
</tr>
<tr>
<td>Régulation des nutriments, rétention des micropolluants et interception des matières en suspension</td>
<td>3</td>
</tr>
<tr>
<td>CRITERES INONDATIONS</td>
<td></td>
</tr>
<tr>
<td>Enjeu Inondation</td>
<td>2</td>
</tr>
<tr>
<td>Etalement et retardement des crues</td>
<td>3</td>
</tr>
</tbody>
</table>
2.4 Hiérarchisation des zones humides

Les zones humides prioritaires pour la gestion de l’eau sont déterminées par l’application du filtre n°1 : si une zone humide présente les notes (4,4), (4,3) ou (3,4) à au moins un couple (enjeu hydraulique/fonction hydraulique), la zone humide est considérée comme prioritaire pour la gestion de l’eau.

Exemple :

<table>
<thead>
<tr>
<th>CRITÈRES DE PRIORITÉ 1</th>
<th>ZH_001</th>
<th>ZH_002</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITÈRES ALIMENTATION EN EAU POTABLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enjeu AEP sur le BV</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Préservation de la ressource AEP</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CRITÈRES QUALITÉ DES EAUX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enjeu Qualité de l’eau</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Régulation des nutriments, rétention des micropolluants et interception des matières en suspension</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CRITÈRES INONDATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enjeu Inondation</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Étalement et retardement des crues</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

La zone humide ZH1_001 est prioritaire pour la gestion de l’eau.
3. Critères de priorité 2 – Critères biodiversité et usage récréatif / Filtre n°2

3.1 Détermination des enjeux sur le territoire

Le critère de priorité 2 regroupe les enjeux « biodiversité » et « usages récréatifs » du SAGE.

De la même manière que pour les enjeux hydrauliques, ces enjeux peuvent être définis au moyen d’éléments d’évaluation.

3.1.1. Enjeu « biodiversité »

<table>
<thead>
<tr>
<th>Priorité écologique ou récréative</th>
<th>Eléments d’évaluation</th>
<th>Données utilisées</th>
<th>Source et date des données</th>
<th>Valeurs possibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enjeu biodiversité sur le territoire</td>
<td>Biodiversité</td>
<td>Zones Naturelles d’Intérêt Ecologique Faunistique et Floristique</td>
<td>DREAL Lorraine, 2011</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zones Natura 2000 (Zones Spéciales de Conservation et Sites d’Intérêt Communautaire)</td>
<td>DREAL Lorraine, 2010</td>
<td>Pas d’inventaire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Espaces Naturels Sensibles</td>
<td>CG 57, 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Espèces protégées</td>
<td>DREAL Lorraine, 2012 CRA, CSL, 2012</td>
<td></td>
</tr>
</tbody>
</table>

En concertation avec le comité technique, les zones d’intérêt non réglementées de type ZNIEFF 1, ENS, ou zones Natura 2000 et les sites présentant des espèces protégées ont été classées avec des notes maximales de 3 ou 4.

Le critère « espèces protégées » concerne l’herpétofauna, l’entomofaune, l’avifaune et la flore.
3.1.2. Enjeu « usages productifs et récréatifs (hors AEP) »

<table>
<thead>
<tr>
<th>Priorité écologique ou récréative</th>
<th>Eléments d'évaluation</th>
<th>Données utilisées</th>
<th>Source et date des données</th>
<th>Valeurs possibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enjeu usages récréatifs sur le territoire</td>
<td>Usages récréatifs</td>
<td>Usages récréatifs (pêche, randonnée pédestre...)</td>
<td>Asconit Consultants, 2012</td>
<td>Absence</td>
</tr>
</tbody>
</table>

La présence d’un usage récréatif sur le territoire lui confère un enjeu important.

3.2 Détermination des enjeux des zones humides

La superposition du contour des zones humides avec la cartographie d’enjeu de la biodiversité et des usages récréatifs permet de remplir les cases suivantes du tableau général :

![Diagramme des enjeux des zones humides](image-url)
3.3 Détermination des fonctions écologiques et récréatives des zones humides

La fonctionnalité de la zone humide en terme de biodiversité et d’usage récréatif est déterminée aux moyens d’éléments d’évaluation issus de l’inventaire terrain.

<table>
<thead>
<tr>
<th>Priorité écologique ou récréative</th>
<th>Eléments d’évaluation</th>
<th>Données utilisées</th>
<th>Source et date des données</th>
<th>Valeurs possibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonction écologique</td>
<td>Corridor écologique</td>
<td>Continuité écologique (donnée issue de l’inventaire en cohérence avec l’étude TVB réalisée sur le périmètre du SCOT)</td>
<td>ASCONIT Consultants, 2012</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Présence d’habitats déterminant des ZNIEFF</td>
<td>Correspondance habitat Centre Biotope/Habitat ZNIEFF (donnée issue de l’inventaire)</td>
<td>Pas d’habitat déterminant des ZNIEFF</td>
<td>ASCONIT Consultants, 2012</td>
<td>Habitat déterminant des ZNIEFF – note 1</td>
</tr>
<tr>
<td>Fonction récréative</td>
<td>Usages productifs ou récréatifs</td>
<td>Tracé de la zone humide</td>
<td>Absence</td>
<td>Présence</td>
</tr>
</tbody>
</table>

La continuité écologique des zones humides avec les milieux naturels environnants a été déterminée sur le terrain ou par photointérpretation (cf 2.3.5 Appréciation de la continuité écologique, partie 4). Plus une zone humide présente de corridors écologiques avec d’autres milieux naturels, plus elle est fonctionnelle en terme de transfert d’espèces faunistiques et floristiques.

Cette donnée a été mise en cohérence avec l’étude Trame Verte et Bleue effectuée sur le territoire du SCOT du Val de Rosselle.

La présence d’un habitat déterminant des ZNIEFF confère à la zone humide un intérêt écologique plus fort (note 4).

La moyenne de ces deux éléments d’évaluation permet d’attribuer une note à la fonction écologique de la zone humide.

La présence d’une zone humide sur un secteur à enjeu récréatif lui confère une forte fonctionnalité récréative.

Il est désormais possible de compléter le tableau général :

<table>
<thead>
<tr>
<th>CRITERES BIODIVERSITE</th>
<th>ZH_001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enjeu Biodiversité</td>
<td>3</td>
</tr>
<tr>
<td>Biodiversité et rôle fonctionnel écologique</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRITERES DE PRIORITE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enjeu usages récréatifs</td>
</tr>
<tr>
<td>Rôle dans les usages récréatifs au sein des zones humides</td>
</tr>
</tbody>
</table>
3.4 Hiérarchisation des zones humides

Les zones humides prioritaires pour la biodiversité ou pour les loisirs sont déterminées par l’application d’un deuxième filtre. Si une zone humide présente les notes (4,4), (4,3) ou (3,4) au couple (enjeu biodiversité/fonction écologique) des critères de priorité 2, la zone humide est considérée comme prioritaire pour la biodiversité. Si une zone humide présente les notes (4,4), (4,3) ou (3,4) au couple (enjeu récréatif/fonction récréative) des critères de priorité 2, la zone humide est considérée comme prioritaire pour les loisirs.

4. Critères de priorité 3 – Zones humides dégradées / Filtre n°3

Ce critère permet aux zones humides dont le fonctionnement hydraulique a été déterminé sur le terrain comme dégradé ou très dégradé d’être identifiées.
PARTIE 6

METHODOLOGIE DE
DETERMINATION DES ZONES HUMIDES DISPARUES
La France a perdu 50% de ses zones humides entre 1960 et 1990.
Cependant, nous savons désormais que ces milieux, outre des aspects de mise en valeur du patrimoine naturel et de préservation de la biodiversité, présentent des atouts incontestables en matière de gestion hydraulique. Ils permettent ainsi de préserver la qualité de la ressource, de lutter contre les inondations, de soutenir les débits d’étiage des cours d’eau...autant de services qui protègent l’Homme et ses biens.

L’objectif de cette partie est de déterminer de quelle manière le territoire du SAGE du Bassin Houiller a souffert de ces destructions et quelle est la proportion du territoire impactée.

Pour cela, une donnée historique a été utilisée, les cartes d’Etat-Major.

1. Références de la donnée

Source : IGN, XIXème siècle

Réalisées à partir des levés terrain (de 1816 à 1863) des officiers du corps de l’État-major, ces cartes du XIXème siècle se caractérisent pas une représentation du relief sous forme de hachures.

Ces cartes éditées dans un but militaire délimitèrent avec précision les zones les plus défavorables en cas de progression sur un territoire, c’est ainsi le cas des zones marécageuses.

Ces données sont donc précieuses pour connaître l’existence des zones humides sur le territoire français dans les années 1800.

2. Détermination des zones humides anciennes

L’ensemble des parcelles présentant le figuré ci-dessous a été répertorié sur le territoire du Bassin Houiller.

La légende de l’Institut Géographique National indique que les terrains humides (marécages, marais, prairies humides, noues...) sont représentés par un lavis bleuté.

Ce travail a donné lieu à la création d’une couche cartographique « BH_zh_Etat_Major ». Il faut cependant être prudent quant à l’exploitation de ces données anciennes. Le manque de connaissance sur la méthodologie utilisée par les officiers du corps de l’État-Major en 1860 apporte un biais considérable à l’analyse des milieux humides.

On peut supposer que l’inventaire de 1860 ne recensait que les terrains humides au sens des marais difficilement franchissables par des troupes militaires. La connaissance scientifique actuelle (ayant conduit à établir une liste précise d’espèces caractéristiques des zones humides) n’était alors pas disponible et n’avait probablement aucun intérêt à cette époque. On peut donc considérer que le territoire devait compter davantage de zones humides que ce que les cartes laissent paraître.
Etude pour l’élaboration de l’inventaire des zones humides sur le périmètre du SCOT du Val de Rosselle et du SAGE du bassin houiller

Zones humides répertoriées d’après la carte d’État-major

Zones humides issues des cartes d’État-Major

Périmètre de la zone d’étude
La cartographie des terrains humides anciens présente de nombreuses similitudes avec la cartographie des zones humides potentielles (cf Partie 2 – Méthodologie de prélocalisation des zones humides). En effet, les zones humides potentielles correspondent majoritairement au réseau hydrographique. La cartographie des zones humides anciennes confirme cette prédiction, les marais et marécages anciens se situaient principalement le long du réseau hydrographique.

3. Caractérisation des zones humides disparues

Une fois la totalité des zones humides anciennes digitalisée, la couche obtenue a été superposée aux zones humides inventoriées dans le cadre de l’inventaire dans le but de déterminer les zones humides qui ont disparues en totalité ou partiellement entre 1863 et 2012.

Cette superposition a donné lieu à la création d’une couche cartographique « BH_zh_disparues » telle qu’explicitée ci-dessous.

Chaque zone disparue a ensuite fait l’objet d’une analyse par photointerprétation ayant pour objectif de déterminer les causes potentielles de disparition. La table attributaire suivante a été complétée pour chaque entité actuellement disparue :

<table>
<thead>
<tr>
<th>Champs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupation du sol</td>
<td>Occupation du sol actuelle, potentiellement à l’origine de la disparition de la zone humide</td>
</tr>
<tr>
<td>Surface</td>
<td>Surface humide disparue</td>
</tr>
</tbody>
</table>

L’occupation du sol répertoriée est la suivante :

- Agriculture (cultures, verges)
- Prairies
- Forêts
- Habitats
- Axes de Communication (routes, autoroutes, voies ferrées)
- Carrières et décharges
- Industrie

Le critère potentiel de disparition de zones humides « diminution de la nappe d’eau liée à l’exploitation industrielle et minière » étant difficile à déterminer par photointerprétation (aucune donnée cartographiée n’est disponible) il n’a pas été intégré à l’analyse. Il est cependant important de souligner que ce phénomène est à l’origine de la disparition de nombreuses zones humides sur le territoire du Bassin Houiller.
PARTIE 7

ZONES HUMIDES FUTURES
La cessation des activités minières sur le territoire du Bassin Houiller s’est accompagnée de l’arrêt des exhaures entraînant l’ennoyage des galeries. La remontée de la nappe concernée (nappe des Grès du Trias inférieur) devrait prendre plusieurs années et aura pour conséquence principale l’apparition de nouvelles zones humides.

Bien qu’il soit difficile de prédire les conséquences précises de tels phénomènes, des études ont permis d’estimer les territoires qui devraient être les plus touchés.

Attention, les données qui suivent sont issues d’études antérieures utilisant des méthodologies et des niveaux de précision différents. Aucune modélisation hydraulique n’a été effectuée dans le cadre de cette étude. Il n’existe aucune certitude quant à l’apparition de nouvelles zones humides sur les secteurs cartographiés. De plus il n’existe aucun retour d’expérience sur une situation similaire sur le territoire national.

Nous parlerons ici de zones POTENTIELLEMENT humides dans le futur, PROBABLEMENT proches de la surface dans les années à venir. La cartographie présentée est un porté à connaissance, elle ne sera pas à l’origine d’une réglementation imposée.

1. Contexte hydrogéologique du territoire

L’étude de l’hydrogéologie du territoire concerné est indispensable pour déterminer les secteurs qui seront impactés par la remontée de la nappe.

Les Grès du Trias inférieur sont affleurants sur environ 45% du territoire. Cette formation hydrogéologique plonge ensuite sous une couche d’argiles imperméables. Lorsqu’on
s’éloigne vers le sud et l’ouest, une couche de calcaire puis le plateau lorrain versant Rhin se retrouvant à la surface du territoire.

Les formations géologiques suivent donc l’évolution suivante :

Coupe géologique synthétique issue de l’état des lieux du SAGE

La remontée de la nappe n’impactera que les secteurs où les Grès du Trias inférieur sont affleurants, soit le secteur caractérisé ci-dessous :

Etude pour l’élaboration de l’inventaire des zones humides sur le périmètre du SCOT du Val de Rosselle et du SAGE du Bassin Houiller

Secteur susceptible d’être impacté par la remontée de la nappe
2. Données disponibles

2.1 Modélisation hydraulique (Antea, 2000)

Source : Zonage de la remontée de la nappe des GTi à moins de 5 mètres sous le sol ainsi que des futures zones humides, pour une pluviométrie efficace moyenne, après arrêt des exhaures minières du bassin houiller lorrain et retour à un régime d’équilibre hydrodynamique, ANTEA, juin 2000 (n°A 20146/A).

Une étude menée par le bureau d’étude Antea en 2000 a permis d’évaluer les conséquences de la remontée de la nappe suite à l’arrêt des exhaures minières. Cette étude traduit un scénario sans pompages miniers ni forages de rabattement de nappe, dans une situation de hautes eaux avec une pluviométrie annuelle importante, voire de période de retour supérieure à 100 ans.

Les données cartographiques de cette étude n’étant pas disponibles, une nouvelle digitalisation de la situation la plus extrême a été effectuée. Cette situation correspond aux données suivantes : zones où la piézométrie de la nappe des GTi se situerait à moins de 5 mètres sous la surface topographique, dans une configuration de hautes eaux.

2.2 Modélisation hydraulique (Grundwasser und Geo-Forschung, 2010)

Extraits du rapport de Grundwasser und Geo-Forschung

Ces cartographies représentent les secteurs de Schoeneck et Freyming-Merlebach à l’issue de la remontée de la nappe. Les zones en bleu correspondent aux zones gorgées d’eau (étangs), au niveau des zones en vert la nappe se situera à moins de 1,5 mètre de la surface, en jaune entre 1,5 et 3 mètres de la surface et en orange entre 3 et 5 mètres de profondeur.

Ces résultats coïncident parfaitement avec les résultats de la modélisation hydraulique effectuée par Antea en 2000. Une digitalisation de ces zones n’est donc pas nécessaire.

2.3 Modélisation hydraulique (Antea, 2004-2005)

Source: Etat des lieux du SAGE, Modélisation hydraulique d’ANTEA, 2004-2005 (n°A54855/A)

Le bureau d’étude ANTEA a entrepris en 2004-2005, sous la direction de Charbonnage de France, une modélisation hydraulique déterminant la profondeur actuelle de la nappe des Grès du Trias inférieur (GTi), la situation future avec prise en compte de la remontée de la nappe ainsi que des mesures compensatoires permettant de minimiser les conséquences néfastes sur le bâti.

Cette étude a été réutilisée dans le cadre de l’état des lieux du SAGE du Bassin Houiller.

Ces données sont **fiables dans la limite des paramètres d’entrée du modèle**. En effet, d’importants volumes de prélèvements d’eau dans les masses d’eau souterraines étaient alors identifiés. Le contexte socio-économique actuel a cependant engendré une diminution de ces prélèvements provoquant un biais aux résultats issus de la modélisation hydraulique de 2004-2005.

Il est ainsi possible que les zones cartographiées soient plus étendues dans la réalité.
Cette conclusion est confirmée par le constat suivant : l’étude d’ANTEA ne s’intéressait qu’aux secteurs à enjeux sur les zones bâties, excluant ainsi les autres types d’occupation du sol (zones agricoles, forestières, prairiales).

2.4 Prise en compte des dépressions

La remontée de la nappe affectera une grande partie des zones situées en fonds de vallée. L’étude pour l’inventaire des zones humides sur le territoire du Bassin Houiller s’est basée sur une méthode de prélocalisation des zones humides ayant déterminée les zones de dépression au moyen du Modèle Numérique de Terrain.

Pour rappel, le facteur « topographie » permettant de déterminer les zones humides potentielles était classé de la manière suivante :

<table>
<thead>
<tr>
<th>Facteur</th>
<th>Classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topographie</td>
<td>1 Crêtes/ convexités OU pentes significatives (> 5°)</td>
</tr>
<tr>
<td></td>
<td>3 Talwegs/ concavités ET pentes très faibles (<2°)</td>
</tr>
</tbody>
</table>

Le Modèle Numérique de Terrain ayant une précision de 25m, chaque pixel de 25m présentant la classe 3 a été déterminé comme secteur à zone potentiellement humide dans le futur.

3. Cartographie des zones humides futures

La cartographie des zones humides futures a été établie en superposant l’ensemble des données citées précédemment. Les secteurs protégés par les forages de rabattement de la nappe ont été exclus.

Deux zonages sont proposés :
- les zones présentant une forte probabilité d’observer la nappe à une faible profondeur, regroupant les données les plus fiables.
- les zones présentant une faible probabilité d’observer la nappe à une faible profondeur. Ces données doivent être interprétées avec précaution.

Attention, la cartographie présentée ne tient pas compte des pompages industriels actuels présents sur le territoire (notamment sur les communes de Saint-Avold, Carling et L’Hôpital). Il n’existe en effet aucune donnée cartographique délimitant le rabattement de la nappe du aux pompages.

La situation présentée ici sera réelle si toutes les activités industrielles cessent sur le territoire.

De plus, l’ensemble des données utilisées doit cependant être interprété avec précaution. La cartographie établie ne signifie pas que les zones identifiées seront concernées par la remontée de la nappe des Grès du Trias inférieur. Il s’agit de zones qui sont susceptibles d’être concernées par le phénomène de remontée de la nappe qui a plusieurs causes en définitif.

Il ne peut être écarté à priori que des zones autres que celles cartographiées soient concernées, compte tenu des incertitudes existantes sur certains paramètres (par exemple l’évolution des prélèvements d’eau dans la nappe).
PARTIE 8

BASE DE DONNEES ET SIG
La réalisation de l'inventaire des zones humides sur le territoire du Bassin Houiller a occasionné la création de bases de données et de couches cartographiques répertoriant un nombre important de données. La partie qui suit présente l’ensemble des données qui seront transmises à l’issue de l’étude.

1. **Base de données**

L’inventaire des zones humides exigeait l’utilisation de la base de données du Tronc Commun National de l’IFEN pour une prise en compte à l’échelle nationale des zones humides présentes sur le territoire.

Asconit Consultants, pour des besoins techniques, a développé sa propre base de données entièrement compatible avec le Tronc Commun National.

Deux bases de données seront ainsi transférées
- la base de données du Tronc Commun National (*zonhum.mdb*) intégrant l’ensemble des informations répertoriées sur le terrain,
- la base de données Asconit (*asconit_zh.mdb*) permettant l’édition de fiches descriptives des zones humides et plans d’eau, telles que présentées dans la présente étude.

Un guide d’utilisation sera édité à l’attention du SCOT du Val de Rosselle et du SAGE du Bassin Houiller pour une utilisation optimale de la base de données.

2. **Données cartographiques**

Des couches cartographiques ont été créées spécifiquement à chaque phase de l’étude. Ces éléments seront transférés au format MAPInfo et ArcGIS dans le système de projection Lambert 93. Les métadonnées seront fournies.

L’ensemble des données sources utilisées (données transmises par les fournisseurs de données, MNT 25m,...) et les données déterminées dans le cadre de l’étude (données de pente...) sera transmis. Un tableau récapitulatif de l’ensemble des données sources utilisées précisera le fournisseur, la date, les limites d’intégration et la(les) phase(s) de l’étude concernée(s). Un second tableau décrira les données déterminées dans le cadre de l’étude (données sources ayant permis l’extraction de l’information, description, phase(s) de l’étude concernée(s)).

2.1. **Phase de prélocalisation**

La phase de prélocalisation des zones humides a permis d’identifier des secteurs potentiellement humides. La couche cartographique « *BH_zh_potentielles* » représentant les zones humides potentielles sera transférée.

Les données cartographiques ayant permis d’aboutir à la carte de prélocalisation seront également fournies (données climatiques, pente, géologie...).

2.2. **Phase de prospection de terrain**

La phase de terrain a permis de digitaliser l’ensemble des zones humides et des plans d’eau présents sur le territoire. Les couches cartographiques résultantes...
«BH_zones_humides» et « BH_plans_d_eau » seront transmises. Une distinction sera apportée dans la table attributaire entre « plan d'eau caractérisé sur le terrain » et « plan d'eau caractérisé par photointerprétation ».
Deux couches cartographiques supplémentaires « BH_zones_humides_attributs » et « BH_plans_d_eau_attributs » permettront d’inclure les caractéristiques principales des zones humides et plans d'eau, issues de la table « T_ZONE_HUMIDE » de la base de données « asconit_zh.mdb » (bassins versants, communes, secteurs, surface, description, menace, fonctions et valeurs, typologie SAGE, continuité écologique).

2.3. Phase de hiérarchisation des zones humides

La phase de hiérarchisation des zones humides fait apparaître deux éléments : les enjeux du territoire et les fonctionnalités des zones humides.
Les couches suivantes seront transmises :
- données cartographiques ayant permis d’aboutir aux cartes d’enjeux et de hiérarchisation (critères des enjeux),
- « BH_fonctions_zh » (intégrant l’ensemble des valeurs des paramètres utilisés pour la détermination des fonctions des zones humides = valeurs de pente, de surface, d’interconnexion etc.),
- « BH_zh_hierarchisation » (intégrant les notes de 1 à 4 des enjeux et fonctions des zones humides, ainsi que les priorités de toutes les zones humides associées à la hiérarchisation).

2.4. Phase de détermination des zones humides disparues

La phase de détermination des zones humides disparues a permis l’édition de différentes couches cartographiques qui seront transférées :
- « BH_zh_Etat_Major » représentant l’ensemble des terrains humides issus de l’analyse des cartes d’Etat-Major,
- « BH_zh_disparues » représentant les terrains humides inventoriés au XIXème siècle mais absents en 2012 (la table attributaire précise l’occupation du sol actuelle, potentiellement à l’origine de la disparition de la zone humide),
- « BH_zh_EM_2012 » correspondant aux zones humides présentes à la fois au XIXème siècle et au XXIème siècle,

2.5. Phase de détermination des zones humides futures

La phase de détermination des zones humides futures a permis d’identifier deux zonages présentant des niveaux différents de probabilité d’apparition de milieux humides :
- « BH_zh_faible_proba » intégrant les zonages dont la remontée de la nappe à un niveau affleurant présente une faible probabilité,
- « BH_zh_forte_proba » intégrant les zonages où l’affleurement de la nappe présente une forte probabilité.
PARTIE 9

CHRONOLOGIE DE L’ETUDE
L’inventaire des zones humides sur le territoire du SAGE du Bassin Houiller et du SCoT du Val de Rosselle s’est déroulé sur une période de 16 mois, de mars 2011 à juillet 2012. Le texte qui suit présente les réunions qui se sont tenues dans le cadre de l’étude.

24 mars 2011 - Réunion de démarrage → comité de pilotage
7 juillet 2011 - Méthodologie de prélocalisation des zones humides et d’inventaire terrain → comité de pilotage
6 octobre 2011 - Présentation des résultats de l’inventaire terrain → comité de pilotage
12 décembre 2011 - Présentation de l’étude et des résultats de l’inventaire terrain → comité de pilotage et membres du SCoT et de la CLE
17 janvier 2012 - Méthodologie de hiérarchisation des zones humides et détermination des zones humides futures → comité de pilotage
6 mars 2012 - Méthodologie de hiérarchisation des zones humides, cartographie des zones humides futures et méthodologie de détermination des zones humides disparues → comité de pilotage
13 mars 2012 - Travail sur la méthodologie de hiérarchisation (validation de la méthodologie) → comité de pilotage
2 avril 2012 - Travail sur la méthodologie de hiérarchisation (validation des cartographies d’enjeux et des fonctions des zones humides) → comité de pilotage
23 avril 2012 - Présentation des résultats de la hiérarchisation, des zones humides disparues et des zones humides futures → comité de pilotage et bureau du SCoT et du SAGE
29 juin 2012 - Réunion de validation de l’étude → comité de pilotage et membres du SCoT et de la CLE
Annexe : Nomenclature Corine Biotope
d’après l’arrêté du 24/06/08 précisant les critères de définition et de délimitation des zones humides en application des articles L.214-7-1 et R211-108 du code de l’environnement

Légende
Style de police : normal (exemple : 45.5 Forêts de Chênes et Lauriers) : Habitat ne présentant pas de caractéristiques hygrophiles.
Style de police : gras (exemple : 15.2 Prairies à Spartine) : Habitat déterminant une zone humide.
Style de police : gras et souligné (exemple : 16.2 Dunes) : Habitat déterminant pour partie une zone humide (des sous-groupements identifiés ou non dans la classification ne sont pas des zones humides).

1 – Habitats littoraux et halophiles

11. Mers et océans
 11.1 Eaux marines
 11.11 Eaux océaniques
 11.12 Eaux du talus et du plateau continental
 11.121 Eaux littorales
 11.122 Eaux néritiques lointaines
 11.123 Talus continental
 11.124 Upwellings
 11.125 Hauts-fonds
 11.2 Benthos (fond marins)
 11.21 Fonds sous-marins profonds
 11.22 Zones benthiques sublittorales sur sédiments meubles
 11.23 Zones benthiques sublittorales sur cailloutis
 11.24 Zones benthiques sublittorales sur fonds rocheux
 11.25 Formations sublittorales de concrétions organogéniques
 11.251 Concrétions coralligènes
 11.252 Trottoirs d’algues encroutantes
 11.253 Trottoirs de Gastéropode et de Polychètes
 11.254 Trottoirs de moules
 11.26 Grottes sous-marines
 11.3 Herbiers marins à plantes vasculaires
 11.31 Herbiers atlantiques à Zostères
 11.32 Herbiers atlantiques à Zostères naines
 11.321 Herbiers atlantiques à Zostères naines de l’Atlantique continental
 11.33 Herbiers méditerranéens à Cymodocea et Zostera
 11.331 Herbiers méditerranéens à Cymodocea
 11.332 Herbiers méditerranéens à Zostera
 11.34 Herbiers de Posidonia
 11.4 Herbiers des eaux saumâtres
 11.41 Groupements marins à Ruppia maritima

12. Bras de mer
13. Estuaires et rivières tidales (soumises à marées)
 13.1 Fleuves et rivières soumis à marées
 13.11 Eau saumâtre des cours d’eau soumis à marées
 13.12 Eau douce des cours d’eau soumis à marées
 13.2 Estuaires
 13.3 Herbiers marins submergés
13.4 Herbiers saumâtres submergés
14. Vasières et bancs de sable sans végétation
15. Marais salés, prés salés (schorres), steppes salées et fourrés sur gypse

15.1 Gazons pionniers salés
 15.11 Gazons à Salicorne et Suaeda
 15.111 Gazons à Salicorne (Slikkes)
 15.1111 Gazons à Salicorne des côtes basses
 15.1112 Groupements à Suaeda et salicorne
 15.112 Gazons continentaux à Salicorne
 15.1121 Suintements continentaux à salicorne
 15.1122 Gazons continentaux secs à salicorne
 15.113 Gazons méditerranéens à salicorne
 15.1131 Gazons à salicorne des basses côtes méditerranéennes
 15.1133 Gazons à salicorne des hautes côtes méditerranéennes
 15.12 Groupements halonitrophiles à Frankenia
 15.13 Groupements à Sagina et Cochlearia

15.2 Prairies à Spartine
 15.21 Prairies à Spartine à feuilles plates

15.3 Prés salés atlantiques
 15.31 Prés salés avec Pucinellia maritima
 15.32 Groupements à Pucinellia maritima des prés salés
 15.321 Prés salés avec graminées et Pourpier marin
 15.322 Prés salés avec graminées et Aster marin
 15.323 Prés salés avec graminées et salicorne
 15.324 Végétation à Halimione pedunculata
 15.33 Communautés du schorre supérieur
 15.331 Formations dominées par, ou riches en, Juncus gerardii
 15.332 Formations dominées par Plantago maritima
 15.333 Gazons à Festuca rubra ou Agrostis stolonifera
 15.334 Gazons à Statice (Armeria maritima)
 15.335 Zones à Carex distans
 15.336 Formations riches en Carex extensa
 15.337 Prairies à lavandes de mer (Limonium vulgare)
 15.338 Formations riches en Blysmus rufus
 15.339 Zones à Eleocharis uniglumis ou E. palustris
 15.33A Zones à Juncus maritimus
 15.33B Champs à armoise marine (Artemisia maritima)
 15.33C Tapis de Potentilla anserina
 15.33D Tapis de Frankenia laevis
 15.33E Zones à Astér (Aster tripolium) du schorre supérieur
 15.34 Communautés à Puccinellia et Spergularia marina
 15.35 Végétation à Elymus pycnanthus
 15.36 Laisse de mer des prés salés atlantiques

15.4 Prés salés continentaux
 15.41 Prés salés continentaux avec Puccinellia distans
 15.42 Prés salés continentaux à joncs et Elymus

15.5 Prés salés méditerranéens
 15.51 Prés salés méditerranéens à Juncus maritimus et J. acutus
 15.52 Prés salés à Juncus gerardi et Carex divisa
 15.53 Prés méditerranéens halo-psammophiles
 15.55 Prés salés méditerranéens à Puccinellia
 15.56 Formations à annuelles sur laisses
 15.57 Prés salés à chiendent et armoise
 15.58 Formations à Juncus subulatus

15.6 Fourrés des prés salés (hygro-halophiles)
15.61 Fourré des marais salés méditerranéens
 15.611 Tapis d’Arthrocnemum perennis
 15.612 Bosquets d’arbisseaux à Arthrocnemum (enganés)
 15.613 Bosquets à Arthrocnemum glaucum (enganés)
 15.614 Bosquets d’arbisseaux à Suaeda
 15.616 Fourrés méditerranéens à pourpier marin et Arthrocnemum fruticosi
15.62 Fourrés de marais salés atlantiques
 15.621 Fourrés argentés à Halimione portulacoides
 15.622 Fruticées atlantiques d’Arthrocnemum perennis
 15.623 Fourrés atlantiques d’arbisseaux à Suaeda
 15.624 Fourrés atlantiques d’arbustes à Arthrocnemum
15.63 Fourrés à Limoniastrum
15.8 Steppes salées méditerranéennes
 15.81 Steppes à Lavande de mer
 15.811 Steppes à Lavande de mer ibériques
 15.8114 Steppes à Lavande de mer catalano-provençales

16. Dunes côtières et plages de sable
16.1 Plages de sable
 16.11 Plages de sable sans végétation
 16.12 Groupements annuels des plages de sable
 16.13 Groupements vivaces des plages de sable

16.2 Dunes
 16.21 Dunes mobiles
 16.211 Dunes embryonnaires
 16.2111 Dunes embryonnaires atlantiques
 16.2112 Dunes embryonnaires méditerranéennes
 16.212 Dunes blanches
 16.2121 Dunes blanches de l’Atlantique
 16.2122 Dunes blanches méditerranéennes
 16.22 Dunes grises
 16.221 Dunes grises septentrionales
 16.2211 Groupements dunaires à Tortula
 16.2212 Groupements dunaires à Corynephorus canescens
 16.2213 Groupements dunaires à Myosoton
 16.222 Dunes grises de Gascogne
 16.225 Pelouses dunaires du Mesobromion
 16.226 Lisière des dunes thermophiles
 16.227 Groupements dunaires à plantes annuelles
 16.228 Groupements dunaires à Malcolmia
 16.229 Pelouses dunaires méditerranéennes xériques
 16.24 Dunes brunes à Bruyères
 16.242 Dunes françaises à Bruyère
 16.244 Dunes françaises à Bruyère cendrée
 16.245 Dunes françaises à Bruyère ciliée
 16.25 Dunes avec fourrés, bosquets
 16.251 Fourrés dunaires à Argousier
 16.252 Fourrés dunaires mixtes
 16.26 Dunes à Salix arenaria
 16.27 Dunes à Genévrier
 16.271 Fourrés dunaires à Genévrier oxycèdre
 16.272 Bois à Juniperetum lyciae
 16.28 Fourrés dunaires à Sclérophylles
 16.29 Dunes boisées

16.3 Lettes dunaires humides
 16.31 Mares des lettes dunaires
16.32 Gazons pionniers des lettes ou pannes humides
16.33 Bas-marais des pannes humides
16.34 Prairies des lettes ou pannes humides
16.35 Roselières et cariçaies des lettes dunaires

17. Plages de galets
17.1 Plage de galets sans végétation
17.2 Végétation annuelle des laisses de mer sur plages de galets
17.3 Végétation vivace des bancs de galets à Crambe
 17.32 Groupements à Crambe de la Manche
 17.33 Groupements à Crambe de l’Atlantique
17.4 Prairies et landes des bancs de galets
 17.41 Pelouses à Avoine élevée sur bancs de galets
 17.42 Landes à Genêts à balais sur bancs de galets

18. Côtes rocheuses et falaises maritimes
18.1 Falaises maritimes nues
 18.11 Rochers et falaises de la frange médiolittorale
 18.12 Rochers de l’étage médiolittoral inférieur
 18.13 Rochers de l’étage médiolittoral supérieur
 18.14 Surplombs, crevasses et grottes de l’étage médiolittoral
 18.15 Mares permanentes des rochers de l’étage médiolittoral
 18.16 Rochers de l’étage supralittoral
 18.17 Flaques des rochers de l’étage supralittoral
18.2 Côtes rocheuses et falaises avec végétation
 18.21 Groupements des falaises atlantiques
 18.22 Groupements des falaises méditerranéennes

19. Ilots, bancs rocheux et récifs

2 – Milieux aquatiques non marins

21. Lagunes
22. Eaux douces stagnantes
 22.1 Eaux douces
 22.11 Eaux oligothrophes pauvres en calcaire
 22.12 Eaux mésotrophes
 22.13 Eaux eutrophes
 22.14 Eaux dystrophes
 22.15 Eaux oligo-mésotrophes riches en calcaire
 22.2 Galets ou vasières non végétalisées
 22.3 Communautés amphibiennes
 22.31 Communautés amphibiennes perennes septentrionales
 22.311 Gazons de Litorelles, étangs à Lobélies, gazons d’Isoètes
 22.3111 Gazons de Litorelles
 22.3112 Étangs à Lobélies
 22.3113 Gazons d’Isoètes euro-sibériens
 22.3114 Communautés flottantes de Sparganium
 22.312 Gazons à Eleocharis en eaux peu profondes
 22.313 Gazons des bordures d’étangs acides en eaux peu profondes
 22.314 Gazons des berges tourbeuses en eaux peu profondes
 22.32 Gazons amphibiens annuels septentrionaux
 22.321 Communautés à Eleocharis
 22.322 Gazons de plantes pionnières des lettes dunaires
 22.323 Communautés naines à Juncus bufonius
 22.3231 Gazons à Juncus bufonius
 22.3232 Gazons à petits Souchets
22.3233 Communautés d'herbes naines des substrats humides
22.33 Groupement à Bidens tripartitus
22.34 Groupements amphibies méridionaux
 22.341 Petits gazons amphibies méditerranéens
 22.3411 Groupements terrestres à Isoètes
 22.3412 Gazons méditerranéens aquatiques à Isoètes
 22.3414 Gazons méditerranéens à Cyperus
 22.3415 Gazons méditerranéens à Fimbristylis
 22.3417 Groupements à Spiranthes et Anagallis
 22.3418 Groupements méditerranéens amphibies à plantes de taille réduite
 22.342 Grandes gazons méditerranéens amphibies
 22.343 Gazons méditerranéens amphibies holo-nitrophiles
 22.344 Prairies à Serapias
22.4 Végétations aquatiques
 22.41 Végétations flottant librement
 22.411 Couvertures de Lemnacées
 22.412 Radeaux d'Hydrocharis
 22.413 Radeaux de Stratiotes
 22.414 Colonies d'Utriculaires
 22.415 Couvertures de Salvinia
 22.416 Groupements à Aldrovanda
 22.42 Végétations enracinées immergées
 22.421 Groupements de grands Potamots
 22.422 Groupements de petits Potamots
 22.43 Végétations enracinées flottantes
 22.431 Tapis flottant de végétaux à grandes feuilles
 22.4311 Tapis de nénuphars
 22.4312 Tapis de chataîgnes d'eau
 22.4313 Tapis de Nymphoides
 22.4314 Tapis de Potamot flottant
 22.4315 Tapis de Renouées
 22.432 Communautés flottantes des eaux peu profondes
 22.433 Groupements oligotrophes de Potamots
 22.44 Tapis immergés de Characées
 22.441 Tapis de Chara
 22.442 Tapis de Nitella
 22.45 Mares de tourbières à Sphaignes et Utriculaires
22.5 Masses d'eau temporaires
23. Eaux stagnantes, saumâtres et salées
 23.1 Eaux saumâtres ou salées sans végétation
 23.11 Eau libre sans tapis de Charophytes
 23.12 Tapis algal de Charophyte
 23.2 Eaux saumâtres ou salées végétalisées
 23.21 Formations immergées des eaux saumâtres ou salées
 23.211 Groupement à Ruppia
 23.212 Communautés lagunaires de végétation marine
 23.22 Scirpaies naines lagunaires
24. Eaux courantes
 24.1 Lits des rivières
 24.11 Ruisselets
 22.12 Zone à Truites
 24.13 Zone à Ombres
 24.14 Zone à Barbeaux
 24.15 Zone à Brèmes

ASCONIT Consultants – Juin 2012
24.16 Cours d’eau intermittents

24.2 Bancs de graviers des cours d’eau
 24.21 Bancs de graviers sans végétation
 24.22 Bancs de graviers végétalisés
 24.221 Groupements d’Epilobes des rivières subalpines
 24.222 Groupements alpins des bancs de graviers
 24.223 Broussailles de Saules et de Myrica germanica
 24.224 Fourrés et bois des bancs de graviers
 24.225 Lits de graviers méditerranéens
 24.226 Graviers des rivières de plaines

24.3 Bancs de sable des rivières
 24.31 Bancs de sables des rivières sans végétation
 24.32 Bancs de sable riverains pourvus de végétation

24.4 Végétation immergée des rivières
 24.41 Végétation des rivières oligotrophes acidiphiles
 24.42 Végétation des rivières oligotrophes riches en calcaire
 24.43 Végétation des rivières mésoptrophes
 24.44 Végétation des rivières eutrophes

24.5 Dépôts d’alluvions fluviatiles limoneuses
 24.51 Dépôts nus d’alluvions fluviatiles limoneuses
 24.52 Groupements euro-sibériens annuels des vases fluviatiles
 24.53 Groupements méditerranéens des limons riverains

3 – Landes, fruticées et prairies

31. Landes et fruticées

31.1 Landes humides
 31.11 Landes humides septentrionales
 31.12 Landes humides méridionales
 31.13 Landes humides à Molinia caerulea

31.2 Landes sèches
 31.21 Landes submontagnardes à Vaccinium
 31.213 Landes hercyniennes à Vaccinium
 31.214 Landes submontagnardes alpines à Vaccinium
 31.215 Land submontagnardes pyrénéo-cantabriques à Vaccinium
 31.22 Landes subatlantiques à Genêt et Callune
 31.223 Landes campino-flandriennes à Callune et genêt
 31.224 Landes campino-flandriennes à Erica cinerea
 31.226 Landes montagnardes à Calluna et Genista
 31.227 Landes à Empetrum nigrum
 31.22A Landes à Genista sagittalis

31.23 Landes atlantiques à Erica et Ulex
 31.231 Landes à Ulex maritima
 31.234 Landes septentrionales à Erica vagans
 31.2341 Landes armoricaines à Erica vagans

31.235 Landes anglo-américaines occidentales à Ajoncs
 31.2351 Landes anglo-armoricaïnes à Ulex gallii et Erica cinerea
 31.2352 Landes anglo-armoricaïnes à Ulex gallii et Erica ciliaris
 31.2353 Landes anglo-armoricaïnes à Ulex gallii et Calluna
 31.236 Landes pyrénéo-cantabriques à Erica mackaiana et E. ciliaris
 31.237 Landes pyrénéo-cantabriques à Erica vagans et Erica cinerea

31.238 Landes anglo-normandes à Ajoncs nains
 31.2381 Landes anglo-normandes à Ulex minor et Erica cinerea
 31.2382 Landes anglo-normandes à Ulex minor et Erica ciliaris
 31.2383 Landes anglo-normandes à Ulex minor et Calluna

31.239 Landes aquitano-ligériennes à Ajoncs nains
31.2391 Landes aquitano-ligériennes à ulex minor et Erica cinerea
31.2392 Landes aquitano-ligériennes à ulex minor et Erica ciliaris
31.2393 Landes aquitano-ligériennes à ulex minor et Calluna
31.24 Landes ibéro-atlantiques à Erica, Ulex et Cistus
 31.2411 Landes aquitanienes à Erica et Cistus
 31.2412 Landes arides de Gascogne et de Sologne

31.4 Landes alpines et boréales
 31.41 Landes naines à Azalée et à vaccinium
 31.411 Landes à Loiseleuria
 31.412 Landes alpines à Vaccinium
 31.42 Landes à Rhododendron
 31.43 Fournés à genévriers nains
 31.431 Fournés à Juniperus communis subsp. Nana
 31.432 Fournés à Juniperus sabina
 31.433 Fournés à Juniperus communis subsp. Hemisphaerica
 31.44 Landes à Empetrum et vaccinium
 31.47 Landes à Arctostaphylos uva-ursi
 31.48 Landes à Rhododendron hirsutum
 31.49 Ilots montagnards à Dryade
 31.491 Ilots de haute montagne à Dryas
 31.5 Fourné bas de Pins de montagne
 31.52 Fournés bas de Pins de montagne des Alpes externes
 31.53 Fournés bas de Pins de montagnes des Alpes sud-occidentales

31.6 Fournés subalpins et communautés de hautes herbes
 31.61 Broussailles d’Aulnes verts
 31.611 Fournés d’Aulnes verts alpins
 31.612 Broussailles corses d’Alnus viridis subsp. Suaveolens
 31.62 Fournés de Saules
 31.621 Fournés de saules pyrénéo-alpins
 61.6211 Brosses alpines de Saules bas
 61.6212 Brosses alpines de Saules prostrés
 61.6213 Brosses alpines de Saules élevés
 61.6214 Broussailles de Saules pyrénéens
 31.63 Hautes herbes subalpines avec buissons
 31.7 Landes épineuses
 31.71 Landes épineuses pyrénéennes
 31.74 Landes épineuses franco-ibériques
 31.741 Landes épineuses à Erinacea
 31.745 Landes en coussinetes de Genista
 31.7451 Landes en coussinetes pyrénéo-cantabriennes
 31.7456 Landes en coussinetes à Genista lobelii et G. pulchella
 31.75 Landes épineuses cyrno-sardes
 31.751 Landes épineuses à Astragalus gennargentueus
 31.752 Landes épineuses cyrno-sardes à Euphorbia
 31.753 Landes en coussinetes cyrno-sardes à Thymus
 31.754 Landes épineuses cyrno-sardes à Genista
 31.755 Landes épineuses cyrno-sardes à Berberis
 31.756 Landes épineuses cyrno-sardes à Anthyllis
 31.7E Landes épineuses à Astragalus sempervirens
 31.8 Fournés
 31.81 Fournés médio-européens sur sol fertile
 31.811 Fruticées à Prunus spinosa et Rubus fruticosus
 31.8111 Fruticées subatlantiques Prunus spinosa et Rubus fruticosus
 31.8112 Fruticées atlantiques Prunus spinosa et Rubus fruticosus
 31.812 Fruticées à Prunelliers et Troènes
 31.8121 Fruticées atlantiques et médio-européennes à prunelliers et Troènes
31.8121 Fruticées médio-européennes à Prunelliers et Troènes
31.81212 Fruticées atlantiques à Crataegus et Hedera
31.812121 Fruticées atlantiques calcicoles
31.812122 Fruticées calcicoles de bords de route
31.8122 Fruticées subméditerranéennes de Prunelliers et de Troènes
31.8123 Fruticées rocailleuses
31.8124 Fruticées d’Argousiers
31.8125 Fruticées intra-alpines d’Epine vinette
31.81251 Fruticées à Prunus brigantiaca
31.81252 Autres fruticées intra-alpines à Epine vinette
31.82 Fruticées à Buis
31.83 Fruticées de sols pauvres atlantiques
31.831 Ronciers
31.832 Fourrés de Nerprun, Sorbiers, Chèvrefeuilles
31.84 Landes à Genêts
31.841 Landes médio-européennes à Cytisus scoparius
31.8411 Landes à Genêts des plaines et des collines
31.8412 Landes alpiniennes à Genêts
31.8413 Landes du Massif central à Sytisus scoparius
31.8414 Landes à Cytisus scoparius des Pyrénées
31.842 Landes à Cytisus purgans
31.8421 Landes à Cytisus purgans des Cévennes
31.8422 Landes à Cytisus purgans pyrénéennes
31.85 Landes à Ajoncs
31.86 Landes à Fougères
31.861 Landes subatlantiques à Fougères
31.863 Landes supra-méditerranéennes à Fougères
31.87 Clairières forestières
31.871 Clairières herbacées
31.8711 Clairières à Épilobes et Digitales
31.8712 Clairières à Arctium et Belladonne
31.872 Clairières à couvert arbustif
31.88 Fruticées à Genévriers communs
31.881 Landes à Genévriers
31.882 Landes à Genévriers
31.89 Fourrés décidus subméditerranéens et sud-occidentaux
31.891 Fourrés décidus subméditerranéens franco-ibériques
31.88 Fourrés décidus subméditerranéens sud-orientaux
31.8C Fourrés de Noisetiers
31.8D Broussailles forestières décidues
31.8E Taillis
31.8F Fourrés mixtes
31.8G Fourrés de conifères
32. Fruticées sclérophyllues
32.1 Matorral arborescent
32.11 Matorral de Chênes sempervirents
32.111 Matorral de Quercus suber
32.112 Matorral acidiphile de Quercus ilex
32.113 Matorral calciphile de Quercus ile, Q. coccifera
32.12 Matorral à Oliviers et Lentisques
32.121 Matorral arborescent à Oliviers
32.122 Matorral arborescent à Caroubiers
32.123 Matorral arborescent à Lentisques
32.124 Matorral arborescent à Myrtes
32.13 Matorral à Genévriers
32.131 Matorral arborescent à Juniperus oxycedrus
32.1311 Matorral arborescent interne à Juniperus oxycedrus
32.1312 Matorral arborescent à Juniperus macrocarpa
32.1312 Matorral arborescent à Juniperus phoenicea
32.1321 Matorral arborescent interne à Juniperus phoenicea
32.1322 Matorral arborescent à Juniperus lycia
32.134 Matorral arborescent à Juniperus communis
32.136 Matorral arborescent à Juniperus thurifera
32.14 Matorral à Pins
32.141 Matorral arborescent à Pinus pinaster
32.142 Matorral arborescent à Pinus pinea
32.143 Matorral arborescent à Pinus halepensis
32.162 Matorral occidental à Chênes décidus
32.18 Matorral à Lauriers

32.2 Formation d’arbustes thermo-méditerranéens
32.21 Fruticées, fourrées et landes à garrigues thermo-méditerranéennes
32.211 Fruticées à oliviers et lentisques
32.212 Landes à garrigues thermo-méditerranéennes
32.2121 Landes à garrigues occidentales à Erica mutliflora
32.214 Fruticées à Lentisques
32.215 Fruticées à Calicotome
32.216 Fourrés à Lauriers
32.217 Garrigues côtières à Helichrysum
32.218 Fourrés à Myrtes
32.219 Buissons thermo-méditerranéens à Chênes kermès
32.21C Buissons à Osyris
32.21D Fourrés à Aliboufier
32.22 Formations à Euphorbes
32.274 Landes à Ulex parviflorus franco-ibériennes

32.3 Maquis silisicoles meso-méditerranéens
32.31 Maquis hauts
32.311 Maquis hauts occidentaux-méditerranéens
32.32 Maquis bas à Ericacées
32.33 Maquis hauts à Cistus
32.332 Maquis ibérique central à grand Ciste
32.334 Maquis tyrrophénoës hauts à Cistus
32.34 Maquis bas à Cistus
32.341 Maquis à Cistus monspeliensis
32.342 Maquis à Cistus salviifolius
32.343 Maquis à Cistus populifolius
32.344 Maquis à Cistus laurifolius
32.346 Maquis à Cistus crispus
32.347 Maquis à Cistus ceticus
32.348 Maquis à Cistus albidus
32.35 Maquis bas à Cistus-Lavandula stoechas
32.351 Maquis centraux méditerranéens à lavande
32.37 Maquis dominés par des genêts

32.4 Garrigues calcicoles de l’ouest meso-méditerranéen
32.41 Garrigues à Chênes kermès
32.42 Garrigues à Romarin
32.43 Garrigues à Cistes
32.431 Garrigues à Cistus albidus
32.433 Garrigues à C. monspeliensis, C. salviifolius, C. incanus
32.44 Garrigues à Euphorbes
32.441 Garrigue à Euphorbe épineuse
32.45 Garrigue à Genévrier oxycèdre
32.46 Garrigues à lavande
32.461 Stations à lavande
32.462 Garrigues mixtes à lavande
32.47 Garrigues à thym, sauge, germendrée et autres labiées
32.48 Garrigues à Genista
 32.481 garrigues à Genista scorpius, G. hispanica
 32.482 Garrigues à Genista corsica
32.49 Garrigues à Calicotome
32.4A Garrigues à Composées
 32.4A1 Garrigues à Helycrisum, Santolina, Phagnalon
 32.4A2 Garrigues à Artemisia
 32.4A3 Garrigues à Inule visqueuse
 32.4A4 Garrigues à Composées moyennes à grandes
32.4B Garrigues à Erica
32.4C Garrigues à Globularia
32.4D Garrigues à Helianthemum et Fumana
32.4E Garrigues à grémil
32.4F Garrigues à thymelaea
32.4G Garrigues à Bupleurum
32.4H Garrigues à Ajoncs
32.4I garrigues à Ononis fructicosa
32.6 Garrigues supra-méditerranéennes
 32.61 Garrigues à Lavande vraie
 32.62 Garrigues à Genista cinerea
 32.63 Garrigues montagnardes à Thym
 32.64 Broussailles supra-méditerranéennes à buis

33. Phryganes
 33.1 Phryganes ouest méditerranéennes des sommets de falaises
 33.11 Phryganes de la Provence calcaire
 33.12 Phryganes de la Provence cristalline
 33.13 Phryganes du Cap Corse
 33.14 Phryganes du détroit de Bonifacio

34. Steppes et prairies calcaires sèches
 34.1 Pelouses pionnières medio-européennes
 34.11 Pelouses médico-européennes sur débris rocheux
 34.111 Gazons à Orpins
 34.112 Formations à Joubarbes
 34.1121 Groupements à Sempervivum tectorum
 34.113 Formations herbueuses sur débris rocheux
 34.114 Groupements théérophytiques médico-européens sur débris rocheux
 34.12 Pelouses des sables calcaires
 34.2 Prairies de plaines à métaux lourds
 34.3 Prairies pérénnes denses et steppes medio-européennes
 34.31 Prairies steppiques sub-continentales
 34.312 Prairies steppiques de l’Europe centrale
 34.3121 Prairies steppiques xérophiles de l’Europe centrale
 34.3122 Prairies steppiques mésophiles de l’Europe centrale
 34.3123 Prairies steppiques à Brachypode penné de l’Europe centrale
 34.314 Prairies arides des Alpes occidentales internes
 34.32 Pelouses calcaires sub-atlantiques semi-arides
 34.322 Pelouses semi-arides médico-européennes à Bromus erectus
 34.3221 Mesobromion mosan
 34.3225 Mesobromion créatqué du bassin parisien
 34.3226 Mesobromion parisien tertiaire
 34.3227 Mesobromion jurassique du bassin parisien
 34.3228 Mesobromion du Rhin moyen
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.3229</td>
<td>Mesobromion du Rhin supérieur</td>
</tr>
<tr>
<td>34.322B</td>
<td>Mesobromion du Jura français</td>
</tr>
<tr>
<td>34.322E</td>
<td>Mesobromion des pré-Alpes nord-occidentales</td>
</tr>
<tr>
<td>34.22G</td>
<td>Mesobromion ligérien</td>
</tr>
<tr>
<td>34.22H</td>
<td>Mesobromion aquitain</td>
</tr>
<tr>
<td>34.22I</td>
<td>Mesobromion du Quercy</td>
</tr>
<tr>
<td>34.22J</td>
<td>Mesobromion des Pyrénées occidentales</td>
</tr>
<tr>
<td>34.323</td>
<td>pelouses semi-arides médio-européennes dominées par Brachypodium</td>
</tr>
<tr>
<td>34.324</td>
<td>Pelouses Mesobromion alluviales et humides</td>
</tr>
<tr>
<td>34.325</td>
<td>Pelouses semi-arides médio-européennes dominées par Sesleria</td>
</tr>
<tr>
<td>34.326</td>
<td>Mesobromion subméditerranéen</td>
</tr>
<tr>
<td>34.3261</td>
<td>Mesobromion pyrénéo-catalan</td>
</tr>
<tr>
<td>34.3262</td>
<td>Mesobromion des Corbières</td>
</tr>
<tr>
<td>34.3263</td>
<td>Mesobromion des Causses</td>
</tr>
<tr>
<td>34.3264</td>
<td>Mesobromion provençal</td>
</tr>
<tr>
<td>34.3265</td>
<td>Mesobromion des Alpes sud-occidentales</td>
</tr>
<tr>
<td>34.33</td>
<td>Prairies calcaires subatlantiques très sèches</td>
</tr>
<tr>
<td>34.332</td>
<td>Pelouses médio-européennes du Xerobromion</td>
</tr>
<tr>
<td>34.3321</td>
<td>Xerobromion mosan</td>
</tr>
<tr>
<td>34.3323</td>
<td>Xerobromion crétaçé du bassin parisien</td>
</tr>
<tr>
<td>34.3324</td>
<td>Xerobromion parisien tertiaire</td>
</tr>
<tr>
<td>34.3325</td>
<td>Xerobromion jurassique du bassin parisien</td>
</tr>
<tr>
<td>34.3326</td>
<td>Xerobromion du Rhin moyen</td>
</tr>
<tr>
<td>34.3327</td>
<td>Xerobromion du Rhin supérieur</td>
</tr>
<tr>
<td>34.3328</td>
<td>Xerobromion du Jura français</td>
</tr>
<tr>
<td>34.332B</td>
<td>Xerobromion des pré-Alpes nord-occidentales</td>
</tr>
<tr>
<td>34.332D</td>
<td>Xerobromion ligérien</td>
</tr>
<tr>
<td>34.332E</td>
<td>Xerobromion aquitain</td>
</tr>
<tr>
<td>34.332F</td>
<td>Xerobromion du Quercy</td>
</tr>
<tr>
<td>34.332G</td>
<td>Xerobromion pyrénéen</td>
</tr>
<tr>
<td>34.332H</td>
<td>Xerobromion des Alpes sud-occidentales</td>
</tr>
<tr>
<td>34.34</td>
<td>Pelouses calcaréo-siliceuses de l’Europe centrale</td>
</tr>
<tr>
<td>34.341</td>
<td>Pelouses sur roches calcaréo-siliceuses</td>
</tr>
<tr>
<td>34.342</td>
<td>Pelouses sur sables légèrement calcaires</td>
</tr>
<tr>
<td>34.35</td>
<td>Pelouses à Fétuque</td>
</tr>
<tr>
<td>34.36</td>
<td>Gazons à Brachypode de Phénicie</td>
</tr>
<tr>
<td>34.4</td>
<td>Lisières forestières thermophiles</td>
</tr>
<tr>
<td>34.41</td>
<td>Licières xéro-thermophiles</td>
</tr>
<tr>
<td>34.42</td>
<td>Lisières mésophiles</td>
</tr>
<tr>
<td>34.5</td>
<td>Pelouses méditerranéennes xériques</td>
</tr>
<tr>
<td>34.51</td>
<td>Pelouses méditerranéennes occidentales xériques</td>
</tr>
<tr>
<td>34.511</td>
<td>Gazons du Bracypodietum retusi</td>
</tr>
<tr>
<td>34.512</td>
<td>Steppe de la Crau</td>
</tr>
<tr>
<td>34.513</td>
<td>Groupements méditerranéens annuels de sols superficiels</td>
</tr>
<tr>
<td>34.5131</td>
<td>Groupements annuels calciphiles de l’ouest méditerranéé</td>
</tr>
<tr>
<td>34.514</td>
<td>Arènes dolomitiques des Causses</td>
</tr>
<tr>
<td>34.52</td>
<td>Pâtures pérennes du sud-ouest méditerranéen</td>
</tr>
<tr>
<td>34.6</td>
<td>Steppes méditerranéennes à petites graminées</td>
</tr>
<tr>
<td>34.63</td>
<td>Steppes à Stipa, Ampeloddesmos, Andropogon, Fétuque</td>
</tr>
<tr>
<td>34.632</td>
<td>Steppes méditerranéennes à Stipa</td>
</tr>
<tr>
<td>34.634</td>
<td>Steppes à Andropogon</td>
</tr>
<tr>
<td>34.7</td>
<td>Pelouses méditerraneo-montagnardes</td>
</tr>
<tr>
<td>34.71</td>
<td>Steppes méditerranéo-montagnardes</td>
</tr>
<tr>
<td>34.711</td>
<td>Steppes méditerranéo-montagnardes à Stipa</td>
</tr>
<tr>
<td>34.7111</td>
<td>Steppes à Stipa des Causses</td>
</tr>
<tr>
<td>34.7112</td>
<td>Steppes à Stipa de Haute-Provence</td>
</tr>
</tbody>
</table>
34.712 Steppes méditerranéo-montagnardes à Sesleria
34.713 Steppes méditerranéo-montagnardes à Festuca-Koeleria
34.7131 Petits gazons des Causses à festuca
34.7132 Gazons des Causses à Carex-Anthyllis
34.7133 Steppes méditerranéo-montagnardes franco-ibériennes
34.714 Steppes méditerranéo-montagnardes à Artemisia
34.72 Steppes méditerranéo-montagnardes et prairies à Aphyllanthes
34.721 Pelouses à Aphyllanthes

34.8 Prairies méditerranéennes subnitrophiles
34.81 Groupements méditerranéens subnitrophiles de graminées

35. Prairies siliceuses sèches

35.1 Gazons atlantiques à nard raide et groupements apparentés
35.11 Gazons à Nard raide
35.12 Prairies à Agrostis-Festuca
35.13 Pelouses à Canche flexuuse
35.14 Pelouses intraforestières à Calamagrostis epigejos
35.15 Pelouses à laîche des sables

35.2 Pelouses siliceuses ouvertes medio-européennes
35.21 Prairies siliceuses à annuelles naines
35.22 Pelouses siliceuses ouvertes permanentes
35.23 Pelouses à Corynephorus

35.3 Pelouses méditerranéennes siliceuses
35.4 Groupements méditerranéens annuels des sables profonds
35.7 Pelouses méditerranéo-montagnardes

36. Pelouses alpines et subalpines

36.1 Groupements des combes à neige
36.11 Groupements des combes à neige acides
36.111 Groupements des combes à neige alpines acides
36.1111 Groupements acidiphiles des combes à neige alpines à mousses
36.1112 Groupements des combes à neige alpines acidiphiles à Saule nain
36.1113 Groupements de combes à neige alpines acidiphiles à Carex-Gnaphaliun

36.12 Groupements de combes à neige sur substrats calcaires
36.121 Groupements de combes à neige sur calcaires à Arabis-Gnaphaliun
36.122 Groupements des combes à neige sur calcaires, à Saules en espaliers

36.2 Groupements des affleurements et rochers érodés alpins

36.3 Pelouses alpines et subalpines acidiphiles
36.31 Gazons à Nard raide et groupements apparentés
36.311 Tapis prairiaux mésophiles pyrénéo-alpins
36.312 Pelouses pyrénéo-alpines hygrophiles à Nard raide
36.313 Pelouses pyrénéo-alpines hygrophiles à Vulpin
36.314 Pelouses pyrénéennes fermées à Festuca eskia
36.315 Pelouses pyrénéennes à Poa violacea
36.316 Pelouses sommitales hercyniennes à Nard raide
36.3161 Pelouses sommitales des Hautes-Chaumes à Nard raide

36.33 Pelouses siliceuses thermophiles subalpines
36.331 Pelouses à Festuca paniculata
36.3311 Pelouses xérophiles des versants rocaillieux à Festuca paniculata
36.3312 Pelouses mésophiles des sols profonds à Festuca paniculata
36.332 Pelouses en gradins à Festuca eskia
36.333 Pelouses en gradins à Festuca varia

36.34 Pelouses à laîche incurvée et groupements apparentés
36.341 Pelouses à Carex curvala
36.342 Pelouses à Festuca halleri
36.343 Pelouses à Festuca airoides
36.344 Pelouses à Festuca borderei
36.345 Pelouses à Oreochloa disticha de l’Allgau

36.37 Pelouses hautes montagnes corses
- 36.371 Prairies en gradins oroméditerranéennes corses
- 36.372 Tapis prairiaux corses des pozzines
- 36.373 Pelouses corses des adrets alpins
- 36.374 Pelouses corses des ubacs alpins

36.4 Pelouses calcicoles alpines et subalpines
- 36.41 Pelouses à laîche ferrugineuse et groupements apparentés
 - 36.411 Pelouses mésophiles à laîche sempervirente
 - 36.4111 Pelouses alpines à laîche sempervirente
 - 36.4112 Pelouses pyrénéennes à laîche sempervirente
- 36.412 Pelouses nordiques à laîche ferrugineuse
- 36.414 Pelouses à fétuque violette et groupements apparentés
 - 36.4141 Pelouses alpines à fétuque violette
 - 36.4142 Pelouses pyrénéennes à fétuque noirissante
- 36.416 Pelouses sommitales du Jura
- 36.42 Pelouses des crêtes à Elyna
 - 36.421 Pelouses alpines à Elyna
 - 36.422 Pelouses pyrénéennes à Elyna
- 36.43 Pelouses en gradins et en guirlandes
 - 36.431 Versants à Seslérie et laîches sempervirentes
 - 36.4311 Pelouses alpines à Seslérie et Laîche sempervirente
 - 36.4312 Pelouses à Seslérie et Laîche sempervirente du Jura
- 36.432 Pelouses à avoine et Seslérie des Alpes méridionales
- 36.433 Tapis de laîches en coussinets
- 36.434 Pelouses pyrénéennes à Festuca gautieri

36.5 Prairies alpines et subalpines fertilisées
- 36.51 Prairies subalpines à Trisetum flavescens
- 36.52 Pâturages à Liondent hispide

37. Prairies humides et mégaphorbiaies

37.1 Communautés à Reine des prés et communautés associées

37.2 Prairies humides eutrophes
- 37.21 Prairies humides atlantiques et subatlantiques
 - 37.211 Prairies humides à ciste des maraîchers
 - 37.212 Prairies humides à Trolle et Chardon des ruisseaux
 - 37.213 Prairies à Canche cespituse
 - 37.214 Prairies à Séneçon aquatique
 - 37.215 Prairies à Renouée bistorte
 - 37.216 Prairies à Jonc filiforme
 - 37.217 Prairies à Jonc diffus
 - 37.218 Prairies à Jonc subnoduleux
 - 37.219 Prairies à Scirpe des bois
- 37.22 Prairies à Jonc acutiflore
- 37.23 Prairies subcontinentales à Cnidium
- 37.24 Prairies à Agropyre et Rumex
 - 37.241 Pâtures à grand jonc
 - 37.242 Pelouses à Agrostide stolonifère et Fétuque faux roseau
- 37.25 Prairies humides de transition à hautes herbes

37.3 Prairies humides oligotrophes
- 37.31 Prairies à Molinie et communautés associées
- 37.311 Prairies calcaires à Molinie
- 37.312 Prairies acides à Molinie
- 37.32 Prairies à Jonc rude et pelouses humides à Nard

37.4 Prairies humides méditerranéennes hautes
37.5 Prairies humides méditerranéennes basses

37.7 Lisières humides à grandes herbes

37.71 Ourlets des cours d’eau

37.711 Communautés fluviales à Angelica archangelica
37.712 Communautés fluviales à Angelica heterocarpa
37.713 Ourlets à Althaea officinalis
37.714 Communautés riveraines à Pétasites
37.715 Ourlets riverains mixtes

37.72 Franges des bords boisés ombragés

37.8 Mégaphorbiaies alpines et subalpines

37.81 Mégaphorbiaies des montagnes hercyniennes du Jura et des Alpes
37.82 Prairies subalpines à Calamagrostis arundinacea
37.83 Mégaphorbiaies pyrénéo-ibériques
37.85 Mégaphorbiaies corses à Cymbalaria
37.86 Mégaphorbiaies corses à Doronicum
37.88 Communautés alpines à Patience

38. Prairies mésophiles

38.1 Pâturages mésophiles

38.11 Pâturages continus

38.111 Pâturages à Ray-grass
38.112 Pâturages à Cynorosus-Centaurea

38.12 Pâturages interrompus par des fossés
38.13 Pâturages densément enherbés

38.2 Prairies à fourrage des plaines

38.21 Prairies atlantiques à fourrages
38.22 Prairies des plaines médio-européennes à fourrage
38.23 Prairies submontagnardes médio-européennes à fourrage

38.3 Prairies à fourrage des montagnes

41. Forêts caducifoliées

41.1 Hêtraies

41.11 Hêtraies acidiphiles médio-européennes à Luzule blanchâtre du Luzulo-Fagenion

41.111 Hêtraies collinéennes à Luzule
41.112 Hêtraies montagnardes à Luzule
41.1122 Hêtraies montagnardes semi-naturelles à Luzule françaises

41.12 Hêtraies atlantiques acidiphiles

41.121 Hêtraies acidiphiles de la Mer du Nord
41.122 Hêtraies acidiphiles sub-atlantiques
41.123 Hêtraies acidiphiles armoricaines
41.124 Hêtraies acidiphiles pyrénéo-cantabriques
41.127 Hêtraies acidiphiles ibériques humides
41.128 Hêtraies acidiphiles ibériques hyper-humides

41.13 Hêtraies neutrophiles

41.131 Hêtraies à Mélique

41.1311 Hêtraies calciclines à Mélique
41.1312 Hêtraies neutroclines à Mélique

41.132 Hêtraies à Jacinthe des bois
41.1321 Hêtraies calciclines à Jacinthe des bois
41.1322 Hêtraies neutroclines à Jacinthe des bois

41.133 Hêtraies à Dentaires

41.14 Hêtraies neutrophiles pyrénéo-cantabriques

41.141 Hêtraies pyrénéennes hygrophiles
41.142 Hêtraies pyrénéennes mésophiles
41.143 Hêtraies oro-cantabriques sub-humides
41.144 Hêtraies-sapinières humides du Massif central

41.15 Hêtraies subalpines
41.16 Hêtraies sur calcaire
 41.161 Hêtraie à laiches
 41.162 Hêtraies xérophiles Nord-Ouest ibériques
41.17 Hêtraies médi-o-européennes méridionales
 41.171 Hêtraies acidiphiles des Alpes méridionales et des Apennins
 41.172 Hêtraies acidiphiles des Pyrénées orientales et des Cévennes
 41.173 Hêtraies corses
 41.174 Hêtraies neutrophiles des Alpes méridionales et des Apennins
 41.1741 Hêtraies neutrophiles des Alpes sud-occidentales
 41.1742 Hêtraies neutrophiles des Alpes maritimes
 41.175 Hêtraies calcicoles sub-méditerranéennes
 41.1751 Hêtraies à Buis
 41.1752 Hêtraies à Androsace
 41.1753 Hêtraies à Lavande
 41.1754 Hêtraies de la Sainte-Baume

41.2 Chênaies-Charmeïas
41.21 Chênaies atlantiques mixtes à Jacinthe des bois
41.22 Frênaies-Chênaies et chênaies-charmaïes aqutianienes
41.23 Frênaies-chênaies sub-atlantiques à primevère
 41.231 Frênaies-chênaies à Arum
 41.232 Frênaies-chênaies à Corydale
 41.233 Frênaies-chênaies à Ail
41.24 Chênaies-charmaïes à Stellaire sub-atlantiques
 41.241 Chênaies-charmaïes du Nord-Ouest
 41.242 Chênaies-charmaïes de Lorraine sur marnes
 41.243 Chênaies-charmaïes collinéennes du Bourgogne
 41.244 Chênaies-charmaïes des plaines du Bourgogne
41.26 Chênaies-charmaïes orientales
 41.261 Chênaies-charmaïes à gaiilet des bois
 41.262 Forêts mixtes de Tilleuls, de Chênes et de Charmes
41.27 Chênaies-charmaïes et frênaies-charmaïes calchphiles
 41.271 Chênaies-charmaïes xérophile sur calcaire
 41.272 Chênaies-charmaïes xérophile sur schistes
 41.273 Chênaies-charmaïes calciphiles
41.28 Chênaies-charmaïes sud-alpines
 41.29 Chênaies-frênaies pyrénéo-cantabriques

41.3 Frênaies
41.33 Forêt de Frênes pyrénéo-cantabriques
41.35 Forêts mixtes atlantiques à Jacinthe
41.36 Frênaies d’Aquitaine
41.37 Frênaies sub-atlantiques
 41.38 Frênaies calciphiles lutétiennes
 41.39 Bois de frênes post-culturaux

41.4 Forêts mixtes de pentes et ravins
41.41 Forêts de ravin à Frêne et Sycomore
 41.42 Forêts de pente hercynienne
41.43 Forêts de pente alpiniennes et péri-alpiniennes
 41.44 Forêts mixtes pyrénéo-cantabrique de Chênes et d’Ormes
 41.45 Forêts thermophiles alpiniennes et péri-alpiniennes mixtes de Tilleuls

41.5 Chênaies acidiphiles
41.51 Bois de Chênes pédonculés et de Bouleaux
41.52 Chênaies acidiphiles atlantiques à Hêtres
 41.521 Forêts de Chênes sessiles du nord-ouest
41.522 Forêts armoricaines de Chênes sessiles
41.523 Forêts sur dune

41.54 Chênaies aquitano-ligériennes sur podzols
41.55 Chênaies aquitano-ligériennes sur sols lessivés ou acides

41.56 Chênaies acidiphiles iberico-atlantiques

41.561 Chênaies acidiphiles pyrénéennes
41.5611 Chênaies acidiphiles pyrénéennes mésophiles
41.5612 Chênaies acidiphiles pyrénéennes hygrophiles

41.57 Chênaies acidiphiles médio-européennes
41.571 Chênaies à Luzule des bois
41.572 Chênaies acidiphiles xéro-thermophiles

41.6 Forêts de Chêne Tauzin
41.65 Forêts françaises de Quercus pyrenaica

41.7 Chênaies thermophiles et supra-méditerranéennes
41.71 Chênaies blanches occidentales et communautés apparentées
41.711 Bois occidentaux de Quercus pubescens
41.712 Bois sub-méditerranéens de Quercus petraea-Q. robur
41.713 Bois de Quercus palensis
41.714 Bois de Chênes blancs eu-méditerranéens
41.72 Chênaies pubescentes cyrno-sardes

41.8 Forêts de charmes Houblon, de Charmes orientaux et thermophiles mixtes
41.81 Bois de Charmes houblon
41.811 Bois de Charmes houblon méso-méditerranéens
41.812 Bois de Charmes houblon supra-méditerranéens
41.813 Bois de Charmes houblon montagnards
41.84 Bois de Tilleuls méditerranéens
41.85 Micocoulaies
41.86 Bois de Frênes thermophiles

41.9 Bois de Châtaigniers

41.A Bois de Charmes

41.B Bois de Bouleaux

41.B1 Bois de Bouleaux de plaine et colline
41.B11 Bois de Bouleaux humides septentrionaux
41.B112 Bois de Bouleaux humides aquitano-ligériens
41.B12 Bois de Bouleaux secs acidiphiles médio-européens
41.B16 Bois de Bouleaux de dunes

41.B3 Bois de Bouleaux montagnards et subalpins
41.B31 Bois de Bouleaux en limite forestière dans les Alpes
41.B32 Massifs forestiers de Bouleaux
41.B33 Bois de Bouleaux pyrénéens

41.B4 Bois de Bouleaux corsicaux

41.C Aulnaies
41.C1 Bois d’Alnus cordata
41.C2 Bois d’Alnus glutinosa

41.D Bois de Tremble
41.D1 Bois de Trembles intra-alpins
41.D2 Bois de Trembles de plaine
41.D3 Stations de Trembles montagnardes
41.D4 Stations de Trembles supra-méditerranéennes

41.E Bois de Sorbiers sauvages

41.F Bois d’Ormes

41.F1 Bois d’Ormes à petites feuilles
41.F11 Bois d’Ormes à violette odorante
41.F12 Bois d’Ormes thermo-atlantiques
41. F2 Bois d’Ormes blancs et d’Ormes diffus
41. G bois de Tilleuls
41. H Autres bois caducifoliés

42. **Forêts de conifères**

42. 1 Sapinières

42. 11 Sapinières neutrophiles

42. 111 Sapinières neutrophiles intra-alpines

42. 1111 Sapinières à Oxalis

42. 1112 Sapinières à hautes herbes

42. 1113 Sapinières à Trochiscanthes

42. 112 Sapinières neutrophiles de la zone du Hêtre

42. 113 Sapinières intra-pyrénéennes

42. 12 Sapinières calciphiles

42. 121 Sapinières calcicoles intra-alpines

42. 122 Sapinières calcicoles de la zone du Hêtre

42. 13 Sapinières acidiphiles

42. 131 Sapinières acidiphiles intra-alpines

42. 132 Sapinières acidiphiles de la zone du Hêtre

42. 133 Sapinières à Rhododendron

42. 1331 Sapinières pyrénéennes à Rhododendron

42. 1332 Sapinières alpiniennes à Rhododendron

42. 1333 Sapinières à Rhododendron sur rocailles

42. 14 Sapinières corses

42. 18 Reboisement en Sapins

42. 181 Reboisement en Abies alba

42. 182 Reboisement en Abies cephalonica

42. 2 Pessières

42. 21 Pessières sub-alpines des Alpes

42. 211 Pessières à Airelle

42. 212 Pessières subalpines à hautes herbes

42. 2121 Pessières subalpines calcicoles à hautes herbes

42. 2122 Pessières subalpines silicicoles à hautes herbes

42. 213 Pessières subalpines à sphaignes

42. 214 Pessières subalpines xérophiles

42. 215 Pessières de stations froides

42. 22 Pessières montagnardes des Alpes internes

42. 221 Pessières montagnardes intra-alpines acidiphiles

42. 222 Pessières montagnardes intra-alpines calciphiles

42. 223 Pessières montagnardes intra-alpines xérophiles

42. 224 Pessières montagnardes intra-alpines à hautes herbes

42. 225 Pessières montagnardes intra-alpines à Sphaignes

42. 23 Forêts subalpines hercyniennes

42. 232 Pessières subalpines du Harz et de l’Erzgebirge

42. 25 Pessières extrazonales

42. 251 Pessières subalpines du Jura

42. 253 Pessières montagnardes à déterminisme édaphique

42. 254 Pessières de la zone montagnarde du Hêtre

42. 26 Reboisement d’Epicéas

42. 3 Forêts de Mélèze et d’Arolles

42. 31 Forêts siliceuses orientales à Mélèze et Arolle

42. 311 Forêts d’Arolles à Myrtille

42. 312 Forêts d’Arolle à Luzule

42. 313 Forêts de Mélèze et d’Arolles à Rhododendron ferrugineux

42. 314 Forêts de Mélèze et d’Arolles à Calamagrostis

42. 315 Forêts de Mélèze et d’Arolles à pin mugo

42. 316 Forêts de Mélèze et d’Arolles avec Genévières nains
42.317 Forêts de Mélèze et d’Arolles à Aulnes verts et hautes herbes
42.318 Forêts de Mélèze et d’Arolles à Lichens
42.319 Forêts d’Arolles à Sphaignes

42.32 Forêts orientales, calcicoles de Mélèzes et d’Arolles
42.321 Forêts d’Arolles et de Mélèze et d’Arolles à Rhododendron cilié
 42.3211 Forêts de Mélèze et d’Arolles à Rhododendron cilié
 42.32111 Forêts de Mélèze et d’Arolles à pin mudo et Rhododendron cilié
 42.32112 Forêts de Mélèze et d’Arolles à Aulne vert et Rhododendron cilié
 42.32113 Autres forêts de Mélèzes et d’Arolles à Rhododendron cilié
 42.3212 Forêts d’Arolles à Rhododendron cilié

42.322 Forêts de Mélèzes sur calcaires
 42.3221 Forêts calcicoles de Mélèzes à Rhododendron
 42.3222 Forêts de Mélèze calcicole sur prairies
 42.3223 Forêts de Mélèze calcicoles sur éboulis
 42.3224 Forêts calcicoles de Mélèzes et d’Épicéas sur pente abrupte

42.33 Forêts occidentales de Mélèzes, de Pins de montagne et d’Arolles
42.331 Forêts occidentales de Mélèzes et de Mélèzes et de Pins de montagne
 42.3311 Forêts occidentales de Mélèzes et de Mélèzes et de Pins de montagne sur landes
 42.3312 Forêts occidentales de Mélèzes et de Mélèzes et de Pins de montagne sur prairies
 42.3313 Forêts occidentales de Mélèzes et de Mélèzes et de Pins de montagne sur hautes herbes

42.332 Forêts occidentales d’Arolles
 42.3321 Forêts occidentales d’Arolles sur silice
 42.3322 Forêts occidentales d’Arolles à Genévriers nains
 42.3323 Forêts occidentales calcicoles d’Arolles

42.34 Formations secondaires de Mélèzes

42.4 Forêts de Pins de montagne
42.41 Forêts de Pins de montagne à Rhododendron ferrugineux
 42.411 Forêts de Pins de montagne à Rhododendron des Alpes externes
 42.412 Forêts de Pins de montagne à Rhododendron du Jura
 42.413 Forêts pyrénéennes de Pins de montagne à Rhododendron

42.42 Forêts de Pins de montagne xéroclines
 42.421 Forêts de Pins de montagne des Alpes internes
 42.4211 Forêts de Pins de montagne à laiche humble
 42.4212 Forêts de Pins de montagne à Erica herbacea
 42.4213 Forêts de Pins de montagne à Silène rupestre
 42.4214 Forêts de Pins de montagne sur amphilotobites
 42.4215 Forêts de Pins de montagne à Ononis
 42.42151 Forêts de Pins de montagne à Ononis d’adret
 42.42152 Forêts de Pins de montagne à Ononis d’ubac
 42.422 Forêts externes de Pins de montagne à Raisin d’Ours et Genévriers
 42.4221 Forêts externes xérophiles de Pins de montagne
 42.4222 Forêts de Pins de montagne à Vaccinium
 42.4223 Forêts abyssales de Pins de montagne

42.423 Forêts de Pins de montagne du Ventoux
42.424 Forêts de Pins de montagne des soulanes pyrénéennes
 42.4241 Forêts de Pins de montagne à Véronique
 42.4242 Forêts pyrénéennes de Pins de montagne à Raisin d’Ours

42.425 Forêts de Pins de montagne à Pulsatille

42.5 Forêts de Pins sylvestres
42.52 Forêts de Pins sylvestres médio-européennes
 42.521 Forêts subcontinentales de Pins sylvestres
42.5212 Forêts de Pins sylvestres des plaines occidentales
42.522 Forêts hercyniennes de Pins sylvestres
42.5223 Forêts de Pins sylvestres des Vosges
42.5224 Pinèdes de Pin sylvestre des grès du Luxembourg
42.53 Forêts steppiques intra-alpines à Ononis
42.54 Forêts de Pins sylvestres à Erica herbacea
42.55 Forêts steppiques intra-alpines à Minuartia
42.56 Forêts mésophiles pyrénéennes de Pins sylvestres
 42.561 Forêts mésophiles calcicoles pyrénéennes de Pins sylvestres
 42.562 Forêts mésophiles acidicoles pyrénéennes de Pins sylvestres
42.57 Forêts de Pins sylvestres du Massif central
42.58 Forêts mésophiles de Pins sylvestres des Alpes sud-occidentales
42.59 Forêts supra-méditerranéennes de Pins sylvestres
 42.591 Forêts péri-alpines à Buis de Pins sylvestres
 42.592 Forêts pré-pyrénéennes à Buis de Pins sylvestres
42.5A Forêts ibériques de Pins sylvestres sur calcaires
 42.5A1 Forêts pyrénéennes de Pins sylvestres à sous bois de lande-hérisson
42.5B Forêts ibériques silicoles de Pins sylvestres
 42.5B1 Forêts pyrénéennes xérophyles de Pins sylvestres
42.5E Reboisement de Pins sylvestres
42.6 Forêts de Pins noirs
 42.63 Forêts de Pins de Salzmann
 42.631 Forêts de Pins de Salzmann des Causses
 42.632 Forêts pré-pyrénéennes de Pins de Salzmann
 42.64 Forêts corsés de Pins laricio
 42.641 Forêts denses montagnardes de Pin laricio
 42.642 Forêts ouvertes montagnardes de Pins laricio
 42.643 Forêts de Pins laricio supra-méditerranéennes
42.8 Bois de Pins méditerranéens
 42.81 Forêts de Pins maritimes
 42.811 Forêts de Pins et de Chênes verts des Charentes
 42.812 Forêts de Pins et de Chênes lièges aquitainnennes
 42.813 Plantations de Pins maritimes des Landes
 42.82 Forêts de Pins mésogéens
 42.823 Forêts de Pins mésogéens franco-italiennes
 42.824 Forêts corsés de Pins mésogéens
 42.83 Forêts de Pins parasols
 42.833 Bois provençaux de Pins parasols
 42.8331 Forêts provençales côtières de Pins parasols
 42.8332 Forêts provençales perméennes de Pins parasols
 42.834 Bois de Pins parasols corsés
 42.84 Forêts de Pins d’Alep
 42.843 Forêts de Pins d’Alep provençal-liguriennes
 42.844 Bois de Pins d’Alep corsés
42.A Forêts dominées par les Cyprés, les Genévriers et les Ifs
 42.A2 Forêts de Juniperus thurifera
 42.A27 Bois pyrénéens de Genévriers thurifères
 42.A28 Bois sud alpins de Genévriers thurifères
 42.A29 Bois de Genévriers thurifères de l’Isère
 42.A2A Bois de Genévriers thurifères corsés
 42.A7 Forêts d’ifs
 42.A72 Forêts d’ifs corsés
 42.A76 Forêts d’ifs provençales
 42.A9 Bois de Genévriers oxyécèdres
 42.AA Bois de Genévriers de Phénicie

43. Forêts mixtes
44. Forêts riveraines, forêts et fourrés très humides

44.1 Formations riveraines de Saules
 44.11 Saussaies pré-alpines
 44.111 Saussaies à Myricaria
 44.112 Saussaies à Argousier
 44.12 Saussaies de plaine, collinéennes et méditerranéo-montagnardes
 44.121 Saussaies à Osier et Salix triandra
 44.122 Saussaies à Saule pourpre méditerranéennes
 44.13 Forêts galeries de Saules blancs
 44.14 Galeries méditerranéennes de grands Salues
 44.141 Galeries méditerranéennes de Saules blancs
 44.1411 Galeries ibériques de grands Saules
 44.1412 Galeries de Salix alba méditerranéennes
 44.142 Bois riverains de Saules à feuilles d'Olivier et de Saules cendrés

44.2 Galeries d’Aulnes blancs
 44.21 Galeries montagnardes d’Aulnes blancs
 44.22 Galeries sub-montagnardes d’Aulnes blancs

44.3 Forêts de Frênes et d’Aulnes des fleuves medio-européens
 44.31 Forêts de Frênes et d’Aulnes des ruisselets et des sources (rivulaires)
 44.311 Forêts de Frênes et d’Aulnes à Laiches
 44.312 Forêts de Frênes et d’Aulnes fontinales
 44.313 Forêts de Frênes et d’Aulnes à Cirse des maraîchers
 44.314 Forêts de Frênes et d’Aulnes des bords de sources à groseilliers
 44.315 Forêts de Frênes et d’Aulnes à grande Prêle
 44.32 Bois de Frênes et d’Aulne des rivières à débit rapide
 44.33 Bois de Frênes et d’Aulnes des rivières à eaux lentes
 44.331 Bois de Frênes et d’Aulnes des rivières medio-européennes à eaux lentes à cerisiers à grappes
 44.332 Bois de Frênes et d’Aulnes à hautes herbes
 44.34 Galeries d’Aulnes nord-ibériques
 44.342 Galeries d’Aulnes pyrénéo-cantabriques
 44.343 Galeries d’Aulnes pyrénéo-catalanes

44.4 Forêts mixtes de Chênes, d’Ormes et de Frênes des grands fleuves
 44.41 Grandes forêts fluviales medio-européennes
 44.42 Forêts fluviales medio-européennes d’Aulnes glutineux

44.5 Galeries méridionales d’Aulnes et de Bouleaux
 44.51 Galeries méridionales d’Aulnes glutineux
 44.513 Galeries d’Aulnes méditerranéennes occidentales
 44.53 Galeries corses d’Aulnes glutineux et d’Aulnes à feuilles cordées
 44.531 Galeries d’Aulnes collinéennes corses
 44.532 Galeries d’Aulnes montagnardes corses

44.6 Forêts méditerranéennes de Peupliers, d’Ormes et de Frênes
 44.61 Forêts de Peupliers riveraines et méditerranéennes
 44.612 Galeries de Peupliers provenço-languedociennes
 44.62 Forêts d’Ormes riveraines et méditerranéennes
 44.63 Bois de Frênes riverains et méditerranéens
 44.64 Galeries de Charmes houblon

44.8 Galeries et fourrés riverains méridionaux
 44.81 Galeries de Laurier-roses, de Gattiliers et de Tamaris
 44.811 Galeries de Laurier-rose
 44.812 Fourrés de Gattiliers
 44.813 Fourrés de Tamaris
 44.8131 Fourrés de Tamaris ouest méditerranéens

44.9 Bois marécageux d’Aulne, de Saule et de Myrte des marais
 44.91 Bois marécageux d’Aulnes
44.911 Bois d’Aulnes marécageux méso-eutrophes
 44.9111 Bois d’Aulnes marécageux atlantiques à grandes touffes de laiches
 44.9112 Bois d’Aulnes marécageux à laiche allongée
44.912 Bois d’Aulnes marécageux oligotrophes
44.92 Saussaies marécageuses
 44.921 Saussaies marécageuses à Saule cendré
 44.922 Saussaies à Sphaigne
 44.923 Saussaies marécageuses à Saule laurier
 44.924 Saussaies naines marécageuses
44.93 Bois marécageux de Bouleaux et de piment royal
44.A Forêts marécageuses de Bouleaux et de Conifères
 44.A1 Bois de Bouleaux à Sphaignes
 44.A11 Forêts de Bouleaux à Sphaignes et Linnaigrettes
 44.A12 Bois de Bouleaux à Sphaignes et à Laiches
 44.A13 Bois de Bouleaux à Sphaignes médo-acidophiles
 44.A2 Bois tourbeux de Pins sylvestres
 44.A3 Bois tourbeux de Pins de montagne
 44.A4 Bois d’Épicéas à Sphaignes
 44.A41 Pessières à Sphaignes montagnardes
 44.A42 Tourbières boisées à Épicéas

45. Forêts sempervirentes non résineuses
45.1 Forêts d’Oliviers et de Caroubiers
 45.11 Bois d’Oliviers sauvages (oléastres)
 45.12 Bois de Caroubiers
45.2 Forêts de Chênes lièges (suberaies)
 45.21 Forêts thyrrehéniennes de Chênes lièges
 45.211 Forêts provençales de Chênes lièges
 45.212 Forêts corse de Chênes lièges
 45.216 Suberaies ctalano-pyrénéennes
 45.24 Forêts aquitaniennes de Chênes lièges
45.3 Forêts de Chênes verts meso et supra méditerranéens
 45.31 Forêts de Chênes verts
 45.311 Forêts de Chênes verts de ibériques nord-occidentales
 45.312 Forêts de Chênes verts de la plaine catalo-provençale
 45.313 Forêts de Chênes verts des collines catalo-provençales
 45.315 Yeuseraies des plaines corsées
 45.316 Forêts de Chênes verts des collines corsées
 45.319 Forêts de Chênes verts illyriennes
 45.32 Forêts de Chênes verts supra-méditerranéennes
 45.321 Forêts de Chênes verts supra-méditerranéennes françaises
 45.322 Forêts supra-méditerranéennes corsées de Chênes verts
 45.33 Forêts aquitaniennes de Chênes verts
45.5 Forêts de Chênes et Lauriers
45.8 Bois de Houx

5 – Tourbières et marais

51. Tourbières hautes

51.1 Tourbières hautes à peu près naturelles
 51.11 Buttes, bourrelets et pelouses tourbeuses
 51.111 Buttes de Sphaignes colorées (butten)
 51.1111 Buttes de Sphagnum magellanicum
 51.1112 Buttes de Sphagnum fuscum
 51.1113 Couronnes de buttes à Sphagnum rubellum
 51.1114 Buttes de Sphagnum rubellum
51.11 Buttes de Sphagnum imbricatum
51.11 Buttes de Sphagnum papillosum
51.11 Buttes de Sphagnum capillifolium
51.12 Bases de buttes et pelouses de Sphaignes vertes
51.13 Buttes à buissons nains
51.13 Buttes à buissons de Callune prostrée
51.13 Buttes à buissons de Bruyère tétragone
51.13 Buttes à buissons de Camarine
51.13 Buttes à buissons de vaccinium
51.136 Buttes à buissons de Myrte des marais (ou piment royal)
51.14 Communautés de tourbières bombées à Trichophorum cespitosum
51.15 Tourbières bombées à Erica et Sphagnum
51.12 Tourbières basses (Schlenken)
51.121 Chenaux, cuvettes profondes
51.122 Chenaux superficiels, cuvettes peu profondes
51.13 Mares de tourbières
51.131 Dépressions tourbeuses (Kolk)
51.132 Autres mares de tourbières
51.14 Suintements et rigoles de tourbières
51.141 Tourbières à Narthecium
51.142 Rigoles à Myrte des marais
51.143 Autres communautés des rigoles et chenaux de tourbières
51.15 Garnitures de bordure (lagg)
51.16 Pré-bois tourbeux

51.2 Tourbières à Molinie bleue

52. Tourbières de couverture

53. Végétation de ceinture des bords des eaux

53.1 Roselières
53.11 Phragmitaies
53.111 Phragmitaies inondées
53.112 Phragmitaies sèches
53.113 Phragmitaies géantes (Phragmites maximus)
53.12 Scirpaies lacustres
53.13 Typhaies
53.14 Roselières basses
53.141 Communautés de Sagittaires
53.142 Communautés à Rubanier négligé
53.143 Communautés à Rubanier rameux
53.144 Communautés avec Acore vrai
53.145 Communautés à Jonc fleuri
53.146 Communautés d’Oenanthe aquatica et de Rorippa amphibia
53.147 Communautés de Prêles d’eau
53.148 Communautés de Grande Berle
53.149 Végétation à Hippuris vulgaris
53.14A Végétation à Eleocharis palustris
53.15 Végétation à Glyceria maxima
53.16 Végétation à Phallaris arundinacea
53.17 Végétation à Scirpes halophiles

53.2 Communautés à grandes Laiches
53.21 Peuplements de grandes Laiches (Magnocariçaies)
53.211 Cariças à laiche distique
53.212 Cariças à laiche aiguë et communautés s’y rapportant
53.2121 Cariças à laiche aiguë
53.2122 Cariças à laiche des marais
53.213 Cariças à Carex riparia
53.214 Cariças à Carex rostrata et à Carex vesicaria
53.2141 Cariçaies à Carex rostrata
53.2142 Cariçaies à Carex vesicaria
53.215 Cariçaies à Carex elata et de Carex cespitosa
53.2151 Cariçaies à Carex elata
53.2152 Cariçaies à Carex cespitosa
53.216 Cariçaies à Carex paniculata
53.217 Cariçaies à Carex appropinquata
53.218 Cariçaies à Carex pseudocyperus
53.219 Cariçaies à Carex vulpina
53.2191 Cariçaies à Carex vulpina
53.2192 Cariçaies à carex cuprina
53.21A Végétation à Carex buxbaumii

53.3 Végétation à Cladium mariscus
53.33 Cladiaies riveraines

53.4 Bordures à Calamagrostis des eaux courantes
53.5 Jonchaies hautes

53.6 Formations riveraines de Cannes
53.61 Communautés avec les Cannes de Ravenne
53.62 Peuplements de Cannes de Provence

54. Bas-marais, tourbières de transition et sources

54.1 Sources
54.11 Sources d’eaux douces pauvres en bases
 54.111 Sources d’eaux douces à Bryophytes
 54.112 Sources à Cardamine
54.12 Sources d’eaux dures
 54.121 Cones de tufs
 54.122 Sources calcaïres

54.2 Bas-marais alcalins (tourbières basses alcalines)
54.21 Bas-marais à Schoenus nigricans (choin noir)
54.22 Bas-marais à Schoenus ferrugineus
 54.221 Bas-marais péri-alpins à Schoenus ferrugineus (choin ferrugineux)
54.23 Tourbières basses à Carex davalliana
 54.231 Bas-marais à Carex devalliana floristiquement riches
 54.232 Bas-marais à Carex devalliana et Trichoporum cespitosum
54.24 Bas-marais alcalins pyrénéens
54.25 Bas-marais à Carex dioica, C. pulicaris, C. flava
 54.253 Bas-marais à Carex flava médio-européens
54.26 Bas-marais à Carex nigra
54.28 Bas-marais à Carex frigida
54.2A Bas-marais à Eleocharis quinqueflora
54.2C Bas-marais alcalins à Carex rostrata
54.2D Tourbières basses alcalines à Scirpus hudsonianus
54.2E Bas-marais alcalins à Trichoporum cespitosum
25.2F Bas-marais médio-européens à Blysmus compressus
54.2G Bas-marais alcalins à petites herbes
54.2H Bas-marais alcalins dunaires à carex trinervis
54.2I Bas-marais à hautes herbes

54.3 Gazons riverains arctico-alpins
54.31 Gazons riverains arctico-alpins à élyne fausse Laiche
54.32 Gazons riverains arctico-alpins à Carex maritima
54.33 Gazons riverains arctico-alpins à Typha

54.4 Bas-marais acides
54.41 Ceintures lacustres à Eriophorum scheuchzeri
54.42 Tourbières basses à Carex nigra, C. canescens et C. echinata
 54.421 Bas-marais alpins à Carex fusca
Syndicat Mixte de Cohérence du Val de Rosselle – Étude pour l’élaboration de l’inventaire des zones humides sur le périmètre du SCOT du
Val de Rosselle et du SAGE du bassin houiller
Guide méthodologique

54.422 Bas-marais sub-atlantiqques à Carex nigra, C. canescens et C. echinata
54.4221 Bas-marais acides sub-atlantiqques à Carex
54.4222 Bas-marais acides sub-atlantiqques à Carex et Juncus
54.4223 Bas-marais sub-atlantiqques à Carex et Sphagnum
54.4224 Bas-marais sub-atlantiqques à Carex, Juncus et Sphagnum
54.424 Bas-marais acides pyrénéens à Laiche noire
54.44 Pozzines complexes à Carex intricata
54.442 Pozzines complexes corsées à Carex intricata
54.45 Bas-marais acides à Trichoporum cespitosum
54.451 Bas-marais acides alpiens à Trichoporum cespitosum
54.452 Bas-marais acides pyrénéens à Trichoporum cespitosum
54.454 Bas-marais acides sub-atlantiqques à Trichoporum cespitosum
54.455 Bas-marais corsées à Trichoporum cespitosum
54.46 Bas-marais à Eriophorum angustifolium

54.5 Tourbières de transition
54.51 Pelouses à Carex lasiocarpa
54.511 Pelouses de Carex lasiocarpa et Mousses brunes
54.512 Pelouses à Carex lasiocarpa et Sphaignes
54.52 Tourbières tremblantes à Carex diandra
54.53 Tourbières tremblantes à Carex rostrata
54.531 Tourbières tremblantes acidiclines à Carex rostrata
54.532 Tourbières tremblantes basiclines à Carex rostrata
54.5321 Tourbières tremblantes basiclines à Carex rostrata et Sphaignes
54.5322 Tourbières tremblantes basiclines à carex rostrata et Mousses brunes
54.54 Pelouses à Carex limosa
54.541 Pelouses à Carex limosa des bourriers et Mousses brunes
54.542 Pelouses à carex limosa et Sphaignes
54.55 Pelouses à carex chororrhiza
54.56 Pelouses à Carex heleonastes
54.57 Tourbières tremblantes à Rhynchospora
54.58 Radeaux de Sphaignes et de Linaigrettes
54.59 Radeaux à Menyanthes trifoliata et Potentilla palustris
54.5A Tourbières à Calla
54.5B Tapis de Mousses brunes
54.5C Tourbières tremblantes à Eriophorum vaginatum
54.5D Tourbières tremblantes à Molinia caerulea
54.5E Tourbières tremblantes à Calamagrostis stricta
54.5F Tourbières tremblantes à Scirpus hudsonianus

54.6 Communautés à Rhynchospora alba

61 – Rochers continentaux, éboulis et sables

61. Eboulis
61.1 Eboulis siliceux, alpins et nordiques
61.11 Eboulis siliceux alpins
61.111 Eboulis à Oxyria digyna
61.1111 Éboulis à Oxyria digyna des Alpes
61.1112 Éboulis du sud-ouest des Alpes à Oxyria digyna
61.1113 Eboulis pyrénéens à Oxyria
61.112 Eboulis à Androsace alpina
61.113 Eboulis à Luzule alpine
61.114 Eboulis siliceux et froids de blocailles
61.12 Eboulis siliceux des montagnes nordiques
61.2 Eboulis calcaires alpins
61.21 Eboulis alpins sur calcoschistes

ASCONIT Consultants – Juin 2012
61.22 Eboulis alpins à Tabouret à feuilles rondes
61.23 Eboulis calcaires fins
 61.231 Eboulis à Petasites
 61.232 Eboulis à Liondent des montagnes
 61.2321 Eboulis à Liondent des montagnes des Alpes centrales
 61.2322 Eboulis à Berardia
61.3 Eboulis ouest-Méditerranéens et éboulis thermophiles
 61.31 Eboulis thermophiles péri-alpins
 61.311 Eboulis à Stipa calamagrostis
 61.312 Eboulis calvaires sub-montagnards
 61.3121 Eboulis à Galeopsis angustifolia
 61.3122 Eboulis à Rumex scutatus
 61.3123 Eboulis calcaires à Fougères
 61.313 Eboulis à Leontodon hyoseroides
 61.32 Eboulis provençaux
 61.33 Eboulis pyrénéo-alpins siliceux thermophiles
 61.34 Eboulis calcaires pyrénéens
 61.341 Eboulis calcaires fins pyrénéens
 61.342 Eboulis calcaires grossiers pyrénéens
 61.343 Eboulis calcaires des Pyrénées de haute altitude
 61.344 Eboulis calcaires humides pyrénéens
 61.345 Eboulis calcaires subalpins pyrénéens
62. Falaises continentales et rochers exposés
 62.1 Végétation des falaises continentales calcaires
 62.11 Falaises calcaires eu-méditerranéennes occidentales et oro-ibériques
 62.111 Falaises calcaires eu-méditerranéennes occidentales
 62.1111 Falaises calcaires ibéro-méditerranéennes
 62.1115 Falaises méditerranéennes à Fougères
 62.12 Falaises calcaires des Pyrénées centrales
 62.13 Falaises calcaires des Alpes ligure et des Apennins
 62.15 Falaises calcaires alpiniennes et sub-méditerranéennes
 62.151 Falaises calcaires ensoleillées des Alpes
 62.152 Falaises calcaires médio-européennes à Fougères
 62.2 Végétation des falaises continentales siliceuses
 62.21 Falaises siliceuses des montagnes médio-européennes
 62.211 Falaises siliceuses pyrénéo-alpines
 62.212 Falaises siliceuses hercyniennes
 62.213 Falaises de serpentines hercyniennes
 62.23 Falaises siliceuses des Alpes sud-occidentales
 62.26 Falaises siliceuses catalano-languedociennes
 62.3 Dalles rocheuses
 62.4 Falaises continentales dénudées
 62.41 Falaises continentales calcaires nues
 62.42 Falaises continentales siliceuses nues
62.5 Falaises continentales humides
 62.51 Falaises continentales humides méditerranéennes
 62.52 Falaises continentales humides septentrionales
63. Neiges et glaces éternelles
 63.1 Nèves
 63.2 Glaciers rocheux
 63.3 Glaciers
64. Dunes sableuses continentales
 64.1 Dunes fluvio-calcaires
 64.11 Pelouses pionnières des dunes continentales
64.12 Pelouses siliceuses des dunes intérieures
64.13 Landes sur dunes continentales
 64.132 Autres landes sur dunes continentales
64.14 Fourrés sur dunes continentales
 64.141 Peuplements de Juniperus communis sur dunes continentales
 64.142 Autres fourrés sur dunes continentales

64.3 Dunes paléo-côtières
64.4 Dunes fluviales
64.5 Dunes d’origine lacustre
64.6 Dunes continentales méditerranéennes
 64.61 Dunes riveraines du Rhône
 64.611 Prairies dunaires du Rhône
 64.6111 Végétation de cannes sur dunes du Rhône
 64.6112 Autres pelouses des dunes du Rhône
 64.612 Fourrés dunaires du Rhône
 64.613 Bois de Genévriers des dunes du Rhône

65. Grottes
 65.2 Grottes de l’Italie septentrionale et du sud-est de la France avec Hydromantes
 65.4 Autres grottes

66. Communautés des sites volcaniques

8 – Terres agricoles et paysages artificiels

81. Prairies améliorées
 81.1 Prairies sèches améliorées
 81.2 Prairies humides améliorées

82. Cultures
 82.1 Champs d’un seul tenant intensément cultivés
 82.11 Grandes cultures
 82.12 Cultures et maraîchages
 82.2 Cultures avec marges de végétation spontanée
 82.3 Culture extensive
 82.4 Cultures inondées
 82.41 Rizières
 82.42 Cressonnières

83. Vergers, bosquets et plantations d’arbres
 83.1 Vergers de hautes tiges
 83.11 Oliveraies
 83.111 Oliveraies traditionnelles
 83.112 Oliveraies intensives
 83.12 Châtaigneraies
 83.13 Vergers à Noyers
 83.14 Vergers à Amandiers
 83.15 Vergers
 83.151 Vergers septentrionaux
 83.152 Vergers méridionaux
 83.16 Vergers à agrumes
 83.18 Autres vergers à hautes tiges
 83.2 Vergers et arbustes
 83.21 Vignobles
 83.211 Vignobles traditionnels
 83.212 Vignobles intensifs
 83.22 Vergers de basses tiges
83.3 Plantations
83.3.1 Plantations de conifères
 83.3.1.1 Plantations de Sapins, d’Épicéas et de Mélèzes européens
 83.3.1.2 Plantations de Pins européens
 83.3.1.3 Plantations de Cyprès et de Genévriers européens
83.3.2 Plantations de Conifères exotiques
 83.3.2.1 Plantations d’Épicéas, de Sapins exotiques, de Spain de Douglas et de Cèdres
 83.3.2.2 Plantations de Pins exotiques
83.3.3 Autres plantations de conifères exotiques

83.32 Plantations d’arbres feuillus
83.3.321 Plantations de Peupliers
 83.3.321.1 Plantations de Peupliers avec une strate herbacée élevée (Mégaphorbiaie)
83.3.322 Autres plantations de Peupliers
83.3.323 Plantations d’Eucalyptus
83.3.324 Plantations de Chênes exotiques
83.3.325 Autres plantations d’arbres feuillus

84. Alignements d’arbres, haies, petits bois, bocage, parcs
84.1 Alignement d’arbres
84.2 Bordures de haies
84.3 Petits bois, bosquets
84.4 Bocages
 84.4.1 Carrières de sable, d’argile et de kaolin
 84.4.2 Carrières de graviers
 84.4.3 Carrières de pierres
 84.4.4 Terrils crassiers et autres tas de détritus
 84.4.5 Voies de chemins de fer, gare de triage et autres espaces ouverts
84.5 Serres et constructions agricoles
84.6 Sites archéologiques

85. Parcs urbains et grands jardins
85.1 Grands parcs
 85.1.1 Parcelles boisées de parcs
 85.1.2 Pelouses de parcs
 85.1.3 Bassins de parcs
 85.1.4 Parterre de fleurs, avec arbres et avec bosquets en parc
 85.1.5 Communautés sub-naturelles des parcs
85.2 Petits parcs et squares citadins
85.3 Jardins
 85.3.1 Jardins ornementaux
 85.3.2 Jardins potagers de subsistance
85.4 Espaces internes au centre-ville

86. Villes, villages et sites industriels
86.1 Villes
86.2 Villages
86.3 Sites industriels en activité
86.4 Sites industriels anciens
 86.4.1 Carrières

87. Terrains en friche et terrains vagues
87.1 Terrains en friche
87.2 Zones rudérales
88. Mines et passages souterrains
89. Lagunes et réservoirs industriels, canaux
 89.1 Lagunes industrielles et canaux salins
 89.11 Ports maritimes
 89.12 Salines
 89.13 Autres lagunes industrielles et canaux salins
 89.2 Lagunes industrielles et canaux d’eau douce
 89.21 Canaux navigables
 89.22 Fossés et petits canaux
 89.23 Lagunes industrielles et bassins ornementaux