DÉTERMINATION ET RÉPARTITION DES « VOLUMES D'EAU PRÉLEVABLES » ENTRE USAGES

Commission « Ressources en eau - groupe de travail quantité »

Rappels du contexte local

- La gestion de la rareté de la ressource est un enjeu important sur le bassin.
 - Débits bas dans les cours d'eau à l'étiage
 - Arrêtés « sécheresse » tous les ans

Les arrêtés sécheresses , initialement réservés aux épisodes climatiques exceptionnels, ne permettent pas une gestion équilibrée et durable de la ressource en eau

- Bassin classé en zone de répartition des eaux (ZRE)
- **±** Étude de détermination des volumes prélevables

Rappels du contexte réglementaire (1/2)

Loi sur l'eau et les milieux aquatiques (2006)

- Atteindre, en ZRE, une gestion équilibrée et durable de la ressource en eau pour 2015
- Mettre en place une gestion collective des prélèvements pour l'irrigation

Mesure du Grenelle de l'Environnement

 Adapter les prélèvements à la disponibilité de la ressource en eau dans le milieu (mesure n°6 de la Loi Grenelle 1)

Rappels du contexte réglementaire (2/2)

SDAGE Rhône Méditerranée 2010-2015

 OF 7: Atteindre l'équilibre quantitatif en améliorant le partage de la ressource en eau et en anticipant l'avenir

Circulaire du 30/06/08

 relative à la résorption des déficits quantitatifs en matière de prélèvement d'eau et à la gestion collective des prélèvements d'irrigation

La résorption des déséquilibres quantitatifs (circulaire du 30 juin 2008)

Objectif

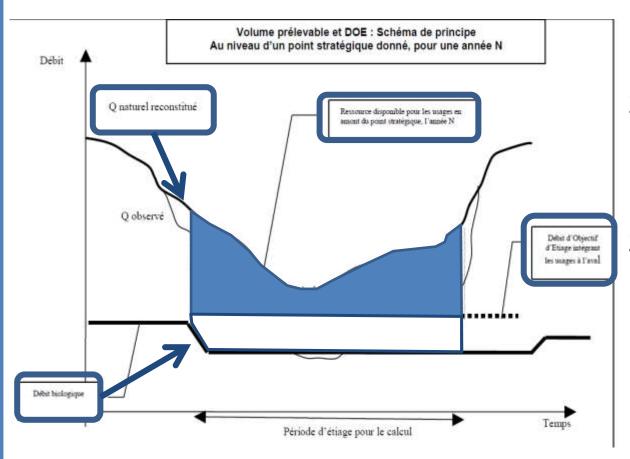
 L'ambition d'un retour à l'équilibre quantitatif, est de permettre de satisfaire l'ensemble des usages en moyenne huit années sur dix, sans avoir besoin de recourir aux mesures réglementaires de gestion de crise.

Principes

- Mettre en cohérence les autorisations de prélèvements et les volumes prélevables au plus tard fin 2014
- Constituer les organismes uniques regroupant les irrigants et répartissant les volumes d'eau attribués à l'irrigation
- Étude de détermination des volumes maximum prélevables, tous usages confondus

Après l'étude de détermination des volumes prélevables

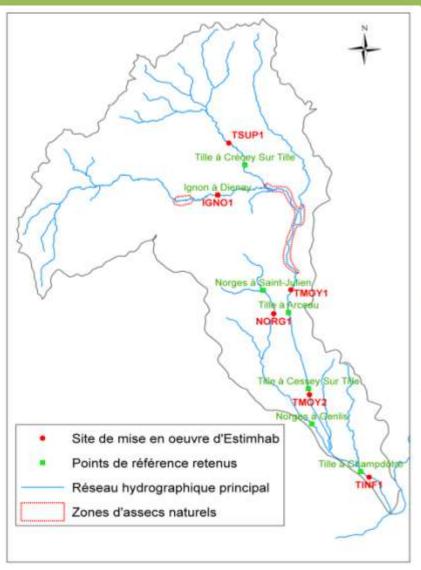
- Validation des résultats de l'EVP par la prochaine CLE (puis notification des résultats de l'EVP au préfet de bassin)
- 2. Répartition des volumes prélevables entre usagers dans le cadre d'une concertation
- 3. Inscription de cette répartition dans le SAGE
- 4. Si besoin, évolution des débits réglementaires



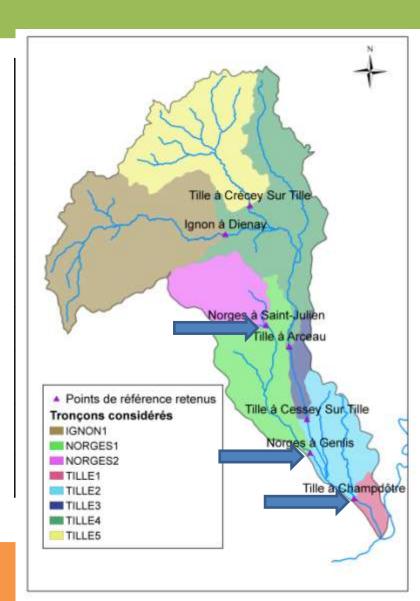
L'ÉTUDE DE DÉTERMINATION DES VOLUMES PRÉLEVABLES

Principe:

« Le volume prélevable est le volume d'eau que le milieu est capable de fournir dans des conditions écologiques satisfaisantes. »

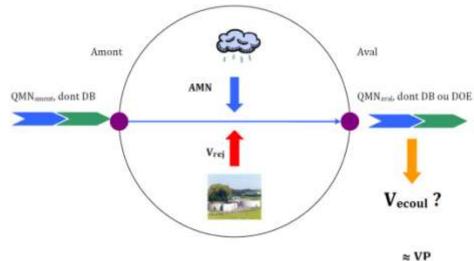


- Le régime naturel a été reconstitué
- Le débit minimum biologique a été calculé et doit être respecté
- 3. Il est déduit un volume théoriquement prélevable prenant en compte les usages aval


Des conditions écologiques satisfaisantes ?

- Conditions d'habitat
- Débits biologiques: principale variable de détermination des volumes prélevables
- Champ d'application de la méthode de détermination des débits biologiques :
 - la qualité physique du cours d'eau (morphologie naturelle ou peu modifiée);
 - une pente de lit inférieure à 5% et une profondeur moyenne inférieure à 2m;
 - une sensibilité du cours d'eau aux étiages ;
 - la proximité d'une station hydrométrique ;
 - l'absence, sur les sites retenus, d'une influence hydraulique liée à la présence d'ouvrage(s).
- Mise en œuvre en 6 points du bassin

Limites sur le bassin de la Tille


- Sur certaines stations, le DB n'a pas pu être déterminé ou retenu comme débit cible en raison:
 - D'une hydrologie naturelle faible (bassin très réactifs au régime pluviale,
 - De la mauvaise qualité physique des cours d'eau,
 - De ces deux contraintes
- Dans ces cas, par défaut, le débit cible retenu : débit mensuel quinquennal sec désinfluencé des usages (QMNA₅ « naturel »)
- Lien fort entre volumes prélevables et qualité physique des cours d'eau
- → Actions du contrat de bassin

Évaluation des volumes prélevables

Objectif:

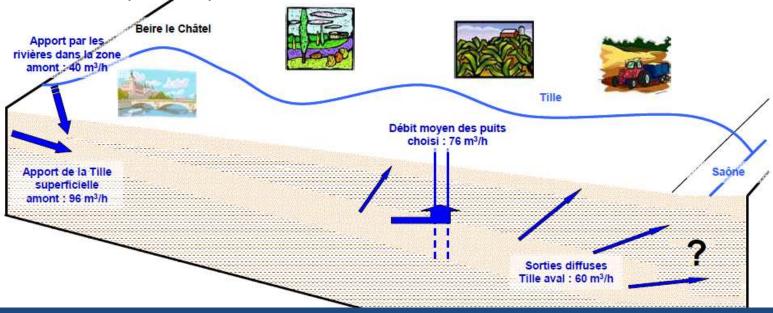
- Arrêtés sécheresses < à 1/5 an
- → Évaluation réalisée par rapport au débit moyen mensuel quinquennal sec « naturel »
- Assurer les besoins du milieu et les usages à l'aval du tronçon

 $V_{ecoul} = (QMN_{amont} - DB_{amont}) + AMN + V_{rej} - (DB_{aval} - DB_{amont})$

Débit s'écoulant en entrée du tronçon après satisfaction des besoins du milieu Apports naturels et humains sur le tronçon considéré Besoins du milieu et des usages (DOE) à l'aval moins le débit déjà assuré pour le milieu en entrée du tronçon (DB _{amont})

- Comparaison des résultats avec 4 scénarios de prélèvements
 - Scé 1: prélèvements correspondants aux années de référence pour les différents usages (AEP: 2004, irrigation: 2006, industriels et golfs: 2009)
 - Scé 2: scé 1 mais irrigation depuis retenues collinaires prélèvements de janvier à mai
 - 2003 : dernière sécheresse
 - 2009 : année moyenne (depuis chute de filière « betteraves)
- Comparaison mois par mois sur chaque tronçon
 - Cas 1 : $V_{\text{\'ecoul}} < (\text{Sc\'e1}, \text{Sc\'e2}, 2003 \text{ et } 2009) : VP = <math>V_{\text{\'ecoul}}$
 - Cas 2 : $V_{\text{\'ecoul}}$ > (Scé1, Scé2 , 2003 et 2009) : VP = max (Scé1, Scé2 , 2003 et 2009)
 - Cas à parts : réalimentation pas stations d'épuration

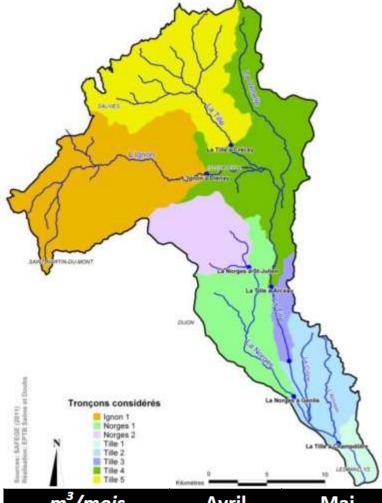
 Proposition de volumes prélevables sur Tille 2 pour des prélèvements amont correspondant au scénario 1


Scénario 1	A	M	J	J	A	S	0
V _{ecoul-T2} (m ³)	11 225 434	7 741 189	3 185 900	837 047	120 497	150 728	413 991
Volumes prélevés Sc. 1 (m³)	56	7 32	1 30	206 758	136 167	7 5	.0
Volumes prélevés Sc. 2 (m³)	11	1 79	8	8 5	9 5		
Volumes prélevés 2003 (m³)	124 187	101 987	175 350	1: 87	10 0	83 669	81 455
Volumes prélevés 2009 (m³)		22	9 3	8 7	5 7	6 7	- 1
Volume prélevable proposé (m³)	Il y a de la marge				Pas de marge	de la	marge

 Proposition de volumes prélevables sur Tille 2 pour des prélèvements amont correspondant au scénario 2

Scénario 2	A	M	J	J	A	S	О
V _{ecoul-T2} (m ³)	11 120 619	7 623 509	3 256 477	956 723	158 042	185 830	434 814
Volumes prélevés Sc. 1 (m³)	56 901	72 462	164 330	206 758	136 167	72 725	77 910
Volumes prélevés Sc. 2 (m³)	116 541	100 279	91 648	82 825	98 065	69 425	77 140
Volumes prélevés 2003 (m³)	124 187	101 987	175 350	157 887	106 030	83 669	81 455
Volumes prélevés 2009 (m³)	78 397	91 932	90 003	89 917	57 347	63 617	56 901
Volume prélevable proposé (m³)	Il y a de la marge						

Nappe des alluvions profondes

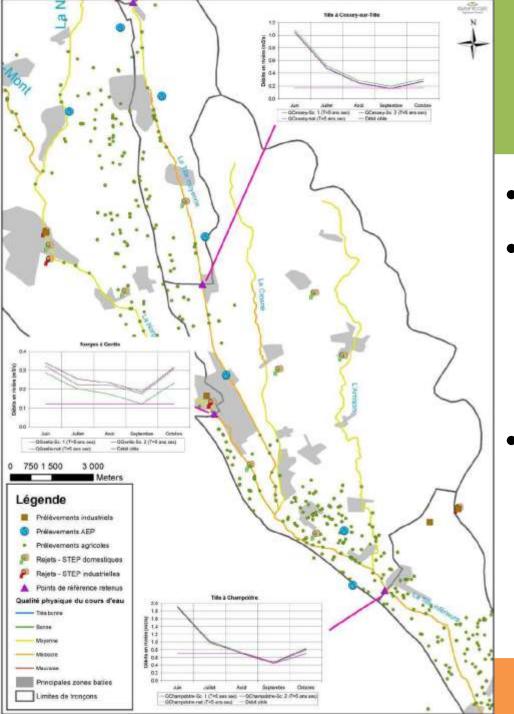

- Bilan du fonctionnement de la nappe profonde (CPGF 1986 et 1996 CG 21)
- Sur la base de ces éléments, on établit un bilan des entrées/sorties permettant d'assurer l'équilibre quantitatif.

Volume prélevable de 650 000 m³/an

- •niveau de prélèvements de 2009
- •soit 54 000 m³/mois

Résultats

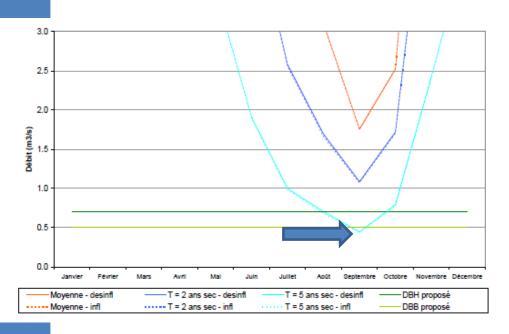
- Mise en œuvre stricte de la méthode


 chiffres bruts qui laissent des marges dans la décision finale
- Déficits principalement sur le Norges et concentrés sur les mois d'aout et de septembre (sauf Norges2)
- Qualité physique des cours d'eau est un facteur limitant fort → importance des actions du Contrat

m³/mois	Avril	Mai	Juin	Juillet	Aout	Sept.	Oct.
Tronçon Tille2	124 187	101 987	175 350	206 758	120 497	83 669	81 455
Tronçon Tille3	59 221	54 572	79 421	97 744	46 036	34 261	33 332
Tronçon Tille4	102 080	121 226	138 608	135 034	110 695	74 037	89 262
Tronçon Tille5	50 792	53 025	54 796	48 258	37 245	54 968	51 607
Tronçon Ignon 1	45 542	47 061	45 542	47 061	37 804	36 584	47 061
Tronçon Norges 1	239 144	218 205	375 108	244 978	171 621	108 390	100 440
Tronçon Norges 2	26 995	25 846	28 782	6 096	6 096	5 899	6 096
BV de la Tille	647 963	621 921	897 608	785 929	529 993	397 808	409 252
Nappe profonde	54 000	54 000	54 000	54 000	54 000	54 000	54 000

Tronçon Tille 1

- Sur ce secteur, les alluvions de la Tille se confondent avec celles de la Saône.
- Ce tronçon appartient à l'unité de gestion BV n°1 (Saône) de l'arrêté cadre n°188 du 10 mai 2012.
 - → Aucune valeur de volume prélevable n'est déterminée sur ce tronçon.
 - → La station hydrométrique de la Tille à Champdôtre est donc considérée comme l'exutoire du bassin versant de la Tille.


Tronçon Tille 2

- Cours d'eau artificialisés
- Des usages de l'eau
 - AEP (3 captages SIPIT + Genlis)
 - Irrigation (200 points)
 - Rejets (5 STEP)
- Borné par 3 stations
 - La Tille à Champdôtre
 - La Tille à Cessey
 - La Norges à Genlis

Tronçon Tille 2

À Champdôtre

- •Les débits sont naturellement insuffisants pour assurer le DB au mois de septembre 1/5 ans.
- •L'amélioration de la morphologie conduirait à un abaissement du DB.
- Pour ne pas proposer des volumes prélevables inatteignables, on retient un débit cible
 - de 450 l/s en sept (QMNA5 nat)
 - •contre 700 l/s le reste de l'année

Tille 2: volumes prélevables

Scénario 1	A	M	J	J	A	S	О
V _{ecoul-T2} (m ³)	11 225 434	7 741 189	3 185 900	837 047	120 497	150 728	413 991
Volumes prélevés Sc. 1 (m³)	56 901	72 462	164 330	206 758	136 167	72 725	77 910
Volumes prélevés Sc. 2 (m³)	116 541	100 279	91 648	82 825	98 065	69 425	77 140
Volumes prélevés 2003 (m³)	124 187	101 987	175 350	157 887	106 030	83 669	81 455
Volumes prélevés 2009 (m³)	78 397	91 932	90 003	89 917	57 347	63 617	56 901
Volume prélevable proposé (m³)	124 187	101 987	175 350	206 758	120 497	83 669	81 455

Volumes prélevables retenus

orce fretait pas ie cas, vr. – rejets seuis

Répartition des VP (1/2)

Deux scénarii de répartition envisagés dans l'étude:

- 1. Selon la part respective des usages passés
 - Sur les périodes 2003, 2009 et scénario 1 (AEP 2004, irrigation 2006, industriels et golfs 2009)
- 2. En fixant la part AEP à hauteur des besoins actuels (moyenne de 2000 à 2009)
 - Les autres usages se répartissent les volumes restants selon les modalités du 1^{er} scénario de répartition

Tille 2: Répartition des VP (2/2)

Mois	Avril	Mai	Juin	Juillet	Aout	Sept.	Oct.		
VP retenus									
Selon la part respective des usages passés									
AEP	0	0	0	0	0	0	0		
Irrigation	0	0	0	0	0	0	0		
En fixant la part AEP à hauteur des besoins actuels									
AEP									
Irrigation	0	0	0	0	0	0	0		

Historique des usages

En dehors de la période d'étiage : report des volumes prélevables d'avril pour tous les tronçons ?

30010000

Réflexions pour une gestion équilibrée de la ressource

- Adapter les débits réglementaires de déclenchement des mesures de restrictions aux besoins des milieux et des usages définis à partir de l'étude et des travaux de la CLE
- Redéfinir des unités de gestion (sous-bassin) adaptées aux spécificités du territoire
- Engager, avec les services de l'Etat, une révision des autorisations prélèvements
- Engager des opérations de restauration morphologique des cours d'eau en priorité sur les secteurs sensibles
- Promouvoir les économies d'eau et les substitutions (bassin / retenue pour irrigation)
- etc.

