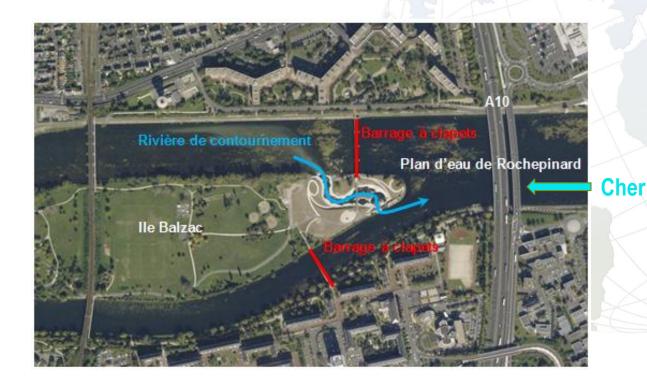


Réunion de démarrage – Jeudi 11 septembre 2014



- Aménagement de la vallée du Cher dans la traversée de Tours à partir de 1963 :
 - Remblais et endiguement pour aménagement de terrains inondables
 - Rectification et élargissement du lit mineur pour compenser la perte de terrains inondables
 - Aménagements de 2 barrages à clapets sur les bras du Cher rescindés créant le plan d'eau de Rochepinard

- Travaux ayant modifié la dynamique fluviale du Cher
- Accumulation de sédiments observés dans la retenue du plan d'eau

- Interrogations quant aux conséquences de cet ensablement
 - Effet du rehaussement du lit sur le développement de la végétation des îles et sur la ligne d'eau en crue
 - Conséquence sur la stabilité des ouvrages hydrauliques (digue, barrage)
 - Pérennité des activités nautiques pratiquées sur le plan d'eau

- Par ailleurs, la Directive Cadre Européenne sur l'Eau fixe comme objectif l'atteinte du bon état écologique des cours d'eau
- Les axes de travail sont liés :
 - Au fonctionnement morpho-sédimentaire naturel des cours d'eau
 - À la continuité écologique : libre circulation des sédiments et transparence piscicole (ce second volet trouve une réponse dans la réalisation de la rivière de contournement de l'île Balzac)

- Nécessité de gérer cette problématique de façon globale
 - => courrier de sollicitation du Maire de Tours et du Président de la CLE du SAGE Cher aval pour un portage de l'étude par l'EP Loire

Financeurs

Objectifs

 Quantifier et identifier les causes des ajustements géomorphologiques du Cher sur la période historique (1950 – 2014) et récente (2002-2014), en particulier le phénomène de sédimentation en amont des barrages de Rochepinard

 Clarifier les enjeux (inondation, stabilité des ouvrages, contraintes réglementaires, etc.) et définir un ou plusieurs scénario(s) d'intervention visant à concilier à court terme la dynamique sédimentaire du Cher avec ces enjeux

 Proposer des éléments pour la gestion de la dynamique sédimentaire du Cher dans la zone tourangelle permettant de concilier à moyen terme les usages et la préservation des milieux aquatiques

Phasage de l'étude

- Tranche ferme :
 - Etat des lieux et diagnostic (2 phases)
 - Délai global : 6 mois
 - 3 réunions de comité de pilotage (démarrage, fin phase 1, fin phase 2)

• Tranche conditionnelle:

- Elaboration d'un plan de gestion durable du transport solide (1 phase)
 - Délai global : 3 mois
 - 2 réunions de comité de pilotage (une intermédiaire, une fin de phase)

Organisation d'Artelia

- Pilotage et production de l'étude depuis l'agence de Tours
 - Chef de projet : Benoît LACOMBRADE 06 16 20 60 67
 - Ingénieur d'étude : Estelle COURTOIS 06 03 46 06 37
- Pôle d'experts
 - Bernard COUVERT
 - Jean-Claude CARRE
- Campagne de Prélèvements de sédiments (sous-traitant)
 - CETU ELMIS INGENIERIE : Philippe JUGE
- Analyse des prélèvements de sédiments (sous-traitant)
 - Laboratoire de Touraine

Emprise d'étude

Phase 1:

Etat des lieux

- Collecte et synthèse des documents et des données existants
 - Données topographiques et bathymétriques
 - Photographies aériennes anciennes
 - Données physico-chimiques
 - Synthèse données Syndicat du Cher Canalisé (notamment extractions, curages)
 - Données Info Sed
 - Données hydrologiques et hydrauliques
 - Données écologiques
 - Données réglementaires (SDAGE, PPRi, PLU, SAGE en cours)
 - Usages de l'eau (activités nautiques, prélèvement, pêche…)
 - Ouvrages hydrauliques implantés sur le Cher

- Barrage de Rochepinard
 - Organes fixes et mobiles
 - Mode actuel de gestion
 - Gestion annuelle (chômage)
 - Gestion en crue

- Prélèvement et analyse de sédiments dans la retenue
 - 2 carottages dans la retenue de Rochepinard
 - Analyses de qualité
 - Analyses granulométriques

- Usages et enjeux socio économiques
 - Quels sont les usages potentiellement impactés par l'ensablement du plan d'eau ?
 - Quels enjeux socio-économiques représentent ces usages (en termes de fréquentation, de bénéfices, etc.)?
 - Quelles contraintes induisent ces enjeux vis-à-vis des milieux aquatiques ?

- Usages et enjeux
 - Risque inondation
 - > Tours = Territoire à Risque Important (Directive Inondation)
 - Stabilité des ouvrages
 - > Erosions : barrage de Larçay, méandre de l'Ecorcheveau
 - Sports et loisirs nautiques
 - > Aviron, canoë-kayak, etc.
 - Qualité de l'eau, des milieux aquatiques et des milieux naturels
 - > Etat des masses d'eau, faune/flore, espèces invasives
 - Alimentation en eau potable
 - > Captage AEP Joué-lès-Tours

Phase 2:

Diagnostic global du fonctionnement hydrosédimentaire

Répondre aux questions suivantes :

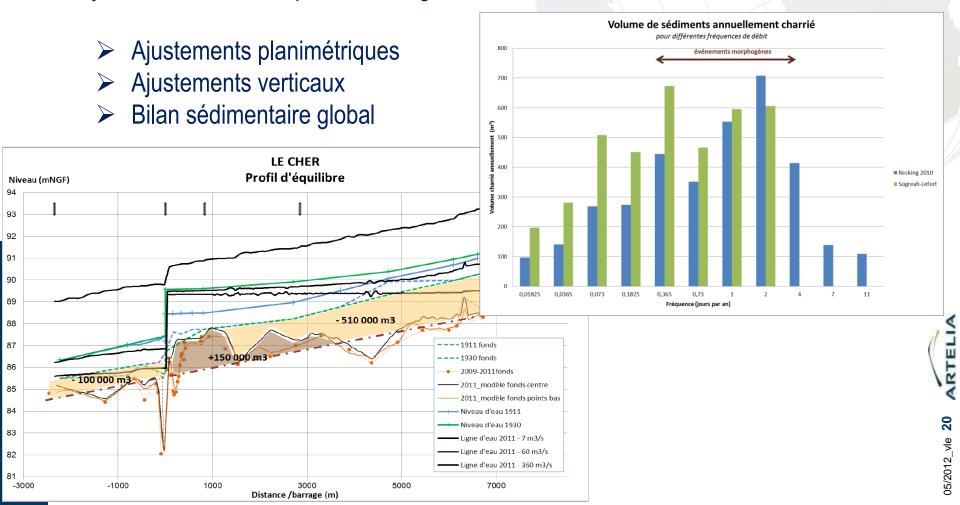
- le tronçon est-il en équilibre dynamique ou en cours d'ajustement ?
- quelles sont les tendances d'ajustement (incision/exhaussement, élargissement, etc.) et quelles sont les zones concernées?
- quelles sont les causes des ajustements observés, en particulier l'ensablement de la retenue ?
- sans intervention, quelle est la tendance d'ajustement à une échelle de 20 à 30 ans ?

a) Prospections de terrain

Relevé d'informations qualitatives (présence de bancs de sable, de radiers, texture des berges, fosses d'extraction, protections de berge, ouvrages transversaux, digues, etc.)

=> interpréter le fonctionnement géomorphologique actuel du Cher et ses ajustements passés

b) Quantification des ajustements du lit à l'échelle historique


Analyse diachronique photos aériennes => Evolution planimétrique

b) Quantification des ajustements du lit à l'échelle historique

Analyse de l'évolution de profils en long et en travers

c) Modélisation du couloir endigué

Elaboration d'un modèle hydraulique 1D simplifié

d) Synthèse : interprétation des ajustements du Cher et identification des causes de l'ensablement

Analyse croisée :

- des ajustements géomorphologiques historiques
- des observations de terrain (aménagements)
- des archives sur les travaux passés (extractions, etc.)

Phase 3:

Elaboration d'un plan de gestion durable du transport solide

Phase 3: Plan de gestion

- a) Etudier différentes alternatives et leurs conséquences
 - Faisabilité technique et juridique
 - Coût global
 - Impact sur le milieu aquatique et les usages

Rechercher l'efficacité sur le long terme à moindre coût

<u>Ex :</u>

- modalités de gestion des barrages de Rochepinard
- curage ponctuel avec réinjection à l'aval
- étude approfondie visant la mise en place de techniques d'ingénierie fluviale permettant une mobilisation des sédiments par le cours d'eau lui-même (création de chenaux préférentiels, réduction de la section, etc.)

Phase 3: Plan de gestion

- b) Scénario impliquant une phase de restauration avec curage ponctuel
- Nécessite une demande d'autorisation « loi sur l'eau »
- Minimiser l'impact négatif sur l'environnement : localisé et de faible ampleur (limité au strict nécessaire)
- Conclure sur la faisabilité de la remise dans le cours d'eau des matériaux mobilisés (contamination des sédiments, effets sur les habitats aquatiques à l'aval, conditions technico-économiques)

